This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnimapr | |- ( ( F Fn A /\ B e. A /\ C e. A ) -> ( F " { B , C } ) = { ( F ` B ) , ( F ` C ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnfv | |- ( ( F Fn A /\ B e. A ) -> { ( F ` B ) } = ( F " { B } ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( F Fn A /\ B e. A /\ C e. A ) -> { ( F ` B ) } = ( F " { B } ) ) |
| 3 | fnsnfv | |- ( ( F Fn A /\ C e. A ) -> { ( F ` C ) } = ( F " { C } ) ) |
|
| 4 | 3 | 3adant2 | |- ( ( F Fn A /\ B e. A /\ C e. A ) -> { ( F ` C ) } = ( F " { C } ) ) |
| 5 | 2 4 | uneq12d | |- ( ( F Fn A /\ B e. A /\ C e. A ) -> ( { ( F ` B ) } u. { ( F ` C ) } ) = ( ( F " { B } ) u. ( F " { C } ) ) ) |
| 6 | 5 | eqcomd | |- ( ( F Fn A /\ B e. A /\ C e. A ) -> ( ( F " { B } ) u. ( F " { C } ) ) = ( { ( F ` B ) } u. { ( F ` C ) } ) ) |
| 7 | df-pr | |- { B , C } = ( { B } u. { C } ) |
|
| 8 | 7 | imaeq2i | |- ( F " { B , C } ) = ( F " ( { B } u. { C } ) ) |
| 9 | imaundi | |- ( F " ( { B } u. { C } ) ) = ( ( F " { B } ) u. ( F " { C } ) ) |
|
| 10 | 8 9 | eqtri | |- ( F " { B , C } ) = ( ( F " { B } ) u. ( F " { C } ) ) |
| 11 | df-pr | |- { ( F ` B ) , ( F ` C ) } = ( { ( F ` B ) } u. { ( F ` C ) } ) |
|
| 12 | 6 10 11 | 3eqtr4g | |- ( ( F Fn A /\ B e. A /\ C e. A ) -> ( F " { B , C } ) = { ( F ` B ) , ( F ` C ) } ) |