This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for upgrimpths . (Contributed by AV, 31-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimpths.p | |- ( ph -> F ( Paths ` G ) P ) |
||
| Assertion | upgrimpthslem2 | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` 0 ) /\ -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` ( # ` F ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimpths.p | |- ( ph -> F ( Paths ` G ) P ) |
|
| 8 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 9 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 10 | 8 9 | grimf1o | |- ( N e. ( G GraphIso H ) -> N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 11 | f1of1 | |- ( N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> N : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
|
| 12 | 5 10 11 | 3syl | |- ( ph -> N : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 13 | 12 | adantr | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> N : ( Vtx ` G ) -1-1-> ( Vtx ` H ) ) |
| 14 | pthiswlk | |- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
|
| 15 | 8 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 16 | 15 | adantr | |- ( ( F ( Walks ` G ) P /\ X e. ( 1 ..^ ( # ` F ) ) ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 17 | fzo0ss1 | |- ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) |
|
| 18 | fzossfz | |- ( 0 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
|
| 19 | 17 18 | sstri | |- ( 1 ..^ ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
| 20 | 19 | sseli | |- ( X e. ( 1 ..^ ( # ` F ) ) -> X e. ( 0 ... ( # ` F ) ) ) |
| 21 | 20 | adantl | |- ( ( F ( Walks ` G ) P /\ X e. ( 1 ..^ ( # ` F ) ) ) -> X e. ( 0 ... ( # ` F ) ) ) |
| 22 | 16 21 | ffvelcdmd | |- ( ( F ( Walks ` G ) P /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` X ) e. ( Vtx ` G ) ) |
| 23 | 22 | ex | |- ( F ( Walks ` G ) P -> ( X e. ( 1 ..^ ( # ` F ) ) -> ( P ` X ) e. ( Vtx ` G ) ) ) |
| 24 | 7 14 23 | 3syl | |- ( ph -> ( X e. ( 1 ..^ ( # ` F ) ) -> ( P ` X ) e. ( Vtx ` G ) ) ) |
| 25 | 24 | imp | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` X ) e. ( Vtx ` G ) ) |
| 26 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 27 | 0elfz | |- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
|
| 28 | 26 27 | syl | |- ( F ( Walks ` G ) P -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 29 | 15 28 | ffvelcdmd | |- ( F ( Walks ` G ) P -> ( P ` 0 ) e. ( Vtx ` G ) ) |
| 30 | 7 14 29 | 3syl | |- ( ph -> ( P ` 0 ) e. ( Vtx ` G ) ) |
| 31 | 30 | adantr | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` 0 ) e. ( Vtx ` G ) ) |
| 32 | 7 | adantr | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> F ( Paths ` G ) P ) |
| 33 | simpr | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> X e. ( 1 ..^ ( # ` F ) ) ) |
|
| 34 | 7 14 26 | 3syl | |- ( ph -> ( # ` F ) e. NN0 ) |
| 35 | 34 27 | syl | |- ( ph -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 36 | 35 | adantr | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 37 | elfzole1 | |- ( X e. ( 1 ..^ ( # ` F ) ) -> 1 <_ X ) |
|
| 38 | elfzoelz | |- ( X e. ( 1 ..^ ( # ` F ) ) -> X e. ZZ ) |
|
| 39 | zgt0ge1 | |- ( X e. ZZ -> ( 0 < X <-> 1 <_ X ) ) |
|
| 40 | 38 39 | syl | |- ( X e. ( 1 ..^ ( # ` F ) ) -> ( 0 < X <-> 1 <_ X ) ) |
| 41 | simpr | |- ( ( X e. ( 1 ..^ ( # ` F ) ) /\ 0 < X ) -> 0 < X ) |
|
| 42 | 41 | gt0ne0d | |- ( ( X e. ( 1 ..^ ( # ` F ) ) /\ 0 < X ) -> X =/= 0 ) |
| 43 | 42 | ex | |- ( X e. ( 1 ..^ ( # ` F ) ) -> ( 0 < X -> X =/= 0 ) ) |
| 44 | 40 43 | sylbird | |- ( X e. ( 1 ..^ ( # ` F ) ) -> ( 1 <_ X -> X =/= 0 ) ) |
| 45 | 37 44 | mpd | |- ( X e. ( 1 ..^ ( # ` F ) ) -> X =/= 0 ) |
| 46 | 45 | adantl | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> X =/= 0 ) |
| 47 | pthdivtx | |- ( ( F ( Paths ` G ) P /\ ( X e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ X =/= 0 ) ) -> ( P ` X ) =/= ( P ` 0 ) ) |
|
| 48 | 32 33 36 46 47 | syl13anc | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` X ) =/= ( P ` 0 ) ) |
| 49 | dff14i | |- ( ( N : ( Vtx ` G ) -1-1-> ( Vtx ` H ) /\ ( ( P ` X ) e. ( Vtx ` G ) /\ ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` X ) =/= ( P ` 0 ) ) ) -> ( N ` ( P ` X ) ) =/= ( N ` ( P ` 0 ) ) ) |
|
| 50 | 13 25 31 48 49 | syl13anc | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( N ` ( P ` X ) ) =/= ( N ` ( P ` 0 ) ) ) |
| 51 | nn0fz0 | |- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
|
| 52 | 26 51 | sylib | |- ( F ( Walks ` G ) P -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 53 | 15 52 | ffvelcdmd | |- ( F ( Walks ` G ) P -> ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) |
| 54 | 7 14 53 | 3syl | |- ( ph -> ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) |
| 55 | 54 | adantr | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` ( # ` F ) ) e. ( Vtx ` G ) ) |
| 56 | 34 51 | sylib | |- ( ph -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 57 | 56 | adantr | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 58 | 38 | zred | |- ( X e. ( 1 ..^ ( # ` F ) ) -> X e. RR ) |
| 59 | elfzolt2 | |- ( X e. ( 1 ..^ ( # ` F ) ) -> X < ( # ` F ) ) |
|
| 60 | 58 59 | ltned | |- ( X e. ( 1 ..^ ( # ` F ) ) -> X =/= ( # ` F ) ) |
| 61 | 60 | adantl | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> X =/= ( # ` F ) ) |
| 62 | pthdivtx | |- ( ( F ( Paths ` G ) P /\ ( X e. ( 1 ..^ ( # ` F ) ) /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) /\ X =/= ( # ` F ) ) ) -> ( P ` X ) =/= ( P ` ( # ` F ) ) ) |
|
| 63 | 32 33 57 61 62 | syl13anc | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( P ` X ) =/= ( P ` ( # ` F ) ) ) |
| 64 | dff14i | |- ( ( N : ( Vtx ` G ) -1-1-> ( Vtx ` H ) /\ ( ( P ` X ) e. ( Vtx ` G ) /\ ( P ` ( # ` F ) ) e. ( Vtx ` G ) /\ ( P ` X ) =/= ( P ` ( # ` F ) ) ) ) -> ( N ` ( P ` X ) ) =/= ( N ` ( P ` ( # ` F ) ) ) ) |
|
| 65 | 13 25 55 63 64 | syl13anc | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( N ` ( P ` X ) ) =/= ( N ` ( P ` ( # ` F ) ) ) ) |
| 66 | 7 14 15 | 3syl | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 67 | 66 | adantr | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 68 | 20 | adantl | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> X e. ( 0 ... ( # ` F ) ) ) |
| 69 | 67 68 | fvco3d | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( N o. P ) ` X ) = ( N ` ( P ` X ) ) ) |
| 70 | 67 36 | fvco3d | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( N o. P ) ` 0 ) = ( N ` ( P ` 0 ) ) ) |
| 71 | 69 70 | neeq12d | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` 0 ) <-> ( N ` ( P ` X ) ) =/= ( N ` ( P ` 0 ) ) ) ) |
| 72 | 67 57 | fvco3d | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( N o. P ) ` ( # ` F ) ) = ( N ` ( P ` ( # ` F ) ) ) ) |
| 73 | 69 72 | neeq12d | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` ( # ` F ) ) <-> ( N ` ( P ` X ) ) =/= ( N ` ( P ` ( # ` F ) ) ) ) ) |
| 74 | 71 73 | anbi12d | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` 0 ) /\ ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` ( # ` F ) ) ) <-> ( ( N ` ( P ` X ) ) =/= ( N ` ( P ` 0 ) ) /\ ( N ` ( P ` X ) ) =/= ( N ` ( P ` ( # ` F ) ) ) ) ) ) |
| 75 | 50 65 74 | mpbir2and | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` 0 ) /\ ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` ( # ` F ) ) ) ) |
| 76 | df-ne | |- ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` 0 ) <-> -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` 0 ) ) |
|
| 77 | df-ne | |- ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` ( # ` F ) ) <-> -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` ( # ` F ) ) ) |
|
| 78 | 76 77 | anbi12i | |- ( ( ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` 0 ) /\ ( ( N o. P ) ` X ) =/= ( ( N o. P ) ` ( # ` F ) ) ) <-> ( -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` 0 ) /\ -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` ( # ` F ) ) ) ) |
| 79 | 75 78 | sylib | |- ( ( ph /\ X e. ( 1 ..^ ( # ` F ) ) ) -> ( -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` 0 ) /\ -. ( ( N o. P ) ` X ) = ( ( N o. P ) ` ( # ` F ) ) ) ) |