This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphisms between simple pseudographs map trails onto trails. (Contributed by AV, 29-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimtrls.t | |- ( ph -> F ( Trails ` G ) P ) |
||
| Assertion | upgrimtrls | |- ( ph -> E ( Trails ` H ) ( N o. P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimtrls.t | |- ( ph -> F ( Trails ` G ) P ) |
|
| 8 | trliswlk | |- ( F ( Trails ` G ) P -> F ( Walks ` G ) P ) |
|
| 9 | 7 8 | syl | |- ( ph -> F ( Walks ` G ) P ) |
| 10 | 1 2 3 4 5 6 9 | upgrimwlk | |- ( ph -> E ( Walks ` H ) ( N o. P ) ) |
| 11 | 4 | adantr | |- ( ( ph /\ x e. dom F ) -> H e. USPGraph ) |
| 12 | 2 | uspgrf1oedg | |- ( H e. USPGraph -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 13 | 11 12 | syl | |- ( ( ph /\ x e. dom F ) -> J : dom J -1-1-onto-> ( Edg ` H ) ) |
| 14 | 1 2 3 4 5 6 7 | upgrimtrlslem1 | |- ( ( ph /\ x e. dom F ) -> ( N " ( I ` ( F ` x ) ) ) e. ( Edg ` H ) ) |
| 15 | f1ocnvdm | |- ( ( J : dom J -1-1-onto-> ( Edg ` H ) /\ ( N " ( I ` ( F ` x ) ) ) e. ( Edg ` H ) ) -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. dom J ) |
|
| 16 | 13 14 15 | syl2anc | |- ( ( ph /\ x e. dom F ) -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. dom J ) |
| 17 | 16 | ralrimiva | |- ( ph -> A. x e. dom F ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. dom J ) |
| 18 | 1 2 3 4 5 6 7 | upgrimtrlslem2 | |- ( ( ph /\ ( x e. dom F /\ y e. dom F ) ) -> ( ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` y ) ) ) ) -> x = y ) ) |
| 19 | 18 | ralrimivva | |- ( ph -> A. x e. dom F A. y e. dom F ( ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` y ) ) ) ) -> x = y ) ) |
| 20 | 2fveq3 | |- ( x = y -> ( I ` ( F ` x ) ) = ( I ` ( F ` y ) ) ) |
|
| 21 | 20 | imaeq2d | |- ( x = y -> ( N " ( I ` ( F ` x ) ) ) = ( N " ( I ` ( F ` y ) ) ) ) |
| 22 | 21 | fveq2d | |- ( x = y -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` y ) ) ) ) ) |
| 23 | 6 22 | f1mpt | |- ( E : dom F -1-1-> dom J <-> ( A. x e. dom F ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. dom J /\ A. x e. dom F A. y e. dom F ( ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) = ( `' J ` ( N " ( I ` ( F ` y ) ) ) ) -> x = y ) ) ) |
| 24 | 17 19 23 | sylanbrc | |- ( ph -> E : dom F -1-1-> dom J ) |
| 25 | eqidd | |- ( ph -> E = E ) |
|
| 26 | 1 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 27 | 7 8 26 | 3syl | |- ( ph -> F e. Word dom I ) |
| 28 | 1 2 3 4 5 6 27 | upgrimwlklem1 | |- ( ph -> ( # ` E ) = ( # ` F ) ) |
| 29 | 28 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` E ) ) = ( 0 ..^ ( # ` F ) ) ) |
| 30 | wrddm | |- ( F e. Word dom I -> dom F = ( 0 ..^ ( # ` F ) ) ) |
|
| 31 | 8 26 30 | 3syl | |- ( F ( Trails ` G ) P -> dom F = ( 0 ..^ ( # ` F ) ) ) |
| 32 | 7 31 | syl | |- ( ph -> dom F = ( 0 ..^ ( # ` F ) ) ) |
| 33 | 29 32 | eqtr4d | |- ( ph -> ( 0 ..^ ( # ` E ) ) = dom F ) |
| 34 | eqidd | |- ( ph -> dom J = dom J ) |
|
| 35 | 25 33 34 | f1eq123d | |- ( ph -> ( E : ( 0 ..^ ( # ` E ) ) -1-1-> dom J <-> E : dom F -1-1-> dom J ) ) |
| 36 | 24 35 | mpbird | |- ( ph -> E : ( 0 ..^ ( # ` E ) ) -1-1-> dom J ) |
| 37 | df-f1 | |- ( E : ( 0 ..^ ( # ` E ) ) -1-1-> dom J <-> ( E : ( 0 ..^ ( # ` E ) ) --> dom J /\ Fun `' E ) ) |
|
| 38 | 37 | simprbi | |- ( E : ( 0 ..^ ( # ` E ) ) -1-1-> dom J -> Fun `' E ) |
| 39 | 36 38 | syl | |- ( ph -> Fun `' E ) |
| 40 | istrl | |- ( E ( Trails ` H ) ( N o. P ) <-> ( E ( Walks ` H ) ( N o. P ) /\ Fun `' E ) ) |
|
| 41 | 10 39 40 | sylanbrc | |- ( ph -> E ( Trails ` H ) ( N o. P ) ) |