This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for upgrimpths . (Contributed by AV, 30-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimpths.p | |- ( ph -> F ( Paths ` G ) P ) |
||
| Assertion | upgrimpthslem1 | |- ( ph -> Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimpths.p | |- ( ph -> F ( Paths ` G ) P ) |
|
| 8 | ispth | |- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
|
| 9 | 8 | simp2bi | |- ( F ( Paths ` G ) P -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
| 10 | 7 9 | syl | |- ( ph -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
| 11 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 12 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 13 | 11 12 | grimf1o | |- ( N e. ( G GraphIso H ) -> N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 14 | dff1o3 | |- ( N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) <-> ( N : ( Vtx ` G ) -onto-> ( Vtx ` H ) /\ Fun `' N ) ) |
|
| 15 | 14 | simprbi | |- ( N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> Fun `' N ) |
| 16 | 5 13 15 | 3syl | |- ( ph -> Fun `' N ) |
| 17 | funco | |- ( ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ Fun `' N ) -> Fun ( `' ( P |` ( 1 ..^ ( # ` F ) ) ) o. `' N ) ) |
|
| 18 | 10 16 17 | syl2anc | |- ( ph -> Fun ( `' ( P |` ( 1 ..^ ( # ` F ) ) ) o. `' N ) ) |
| 19 | resco | |- ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) = ( N o. ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
|
| 20 | 19 | cnveqi | |- `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) = `' ( N o. ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
| 21 | cnvco | |- `' ( N o. ( P |` ( 1 ..^ ( # ` F ) ) ) ) = ( `' ( P |` ( 1 ..^ ( # ` F ) ) ) o. `' N ) |
|
| 22 | 20 21 | eqtri | |- `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) = ( `' ( P |` ( 1 ..^ ( # ` F ) ) ) o. `' N ) |
| 23 | 22 | funeqi | |- ( Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) <-> Fun ( `' ( P |` ( 1 ..^ ( # ` F ) ) ) o. `' N ) ) |
| 24 | 18 23 | sylibr | |- ( ph -> Fun `' ( ( N o. P ) |` ( 1 ..^ ( # ` F ) ) ) ) |