This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 17-Feb-2004) Avoid ax-10 , ax-11 , ax-12 . (Revised by GG, 28-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disj | |- ( ( A i^i B ) = (/) <-> A. x e. A -. x e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-in | |- ( A i^i B ) = { y | ( y e. A /\ y e. B ) } |
|
| 2 | 1 | eqeq1i | |- ( ( A i^i B ) = (/) <-> { y | ( y e. A /\ y e. B ) } = (/) ) |
| 3 | eleq1w | |- ( y = x -> ( y e. A <-> x e. A ) ) |
|
| 4 | eleq1w | |- ( y = x -> ( y e. B <-> x e. B ) ) |
|
| 5 | 3 4 | anbi12d | |- ( y = x -> ( ( y e. A /\ y e. B ) <-> ( x e. A /\ x e. B ) ) ) |
| 6 | 5 | eqabcbw | |- ( { y | ( y e. A /\ y e. B ) } = (/) <-> A. x ( ( x e. A /\ x e. B ) <-> x e. (/) ) ) |
| 7 | imnan | |- ( ( x e. A -> -. x e. B ) <-> -. ( x e. A /\ x e. B ) ) |
|
| 8 | noel | |- -. x e. (/) |
|
| 9 | 8 | nbn | |- ( -. ( x e. A /\ x e. B ) <-> ( ( x e. A /\ x e. B ) <-> x e. (/) ) ) |
| 10 | 7 9 | bitr2i | |- ( ( ( x e. A /\ x e. B ) <-> x e. (/) ) <-> ( x e. A -> -. x e. B ) ) |
| 11 | 10 | albii | |- ( A. x ( ( x e. A /\ x e. B ) <-> x e. (/) ) <-> A. x ( x e. A -> -. x e. B ) ) |
| 12 | 2 6 11 | 3bitri | |- ( ( A i^i B ) = (/) <-> A. x ( x e. A -> -. x e. B ) ) |
| 13 | df-ral | |- ( A. x e. A -. x e. B <-> A. x ( x e. A -> -. x e. B ) ) |
|
| 14 | 12 13 | bitr4i | |- ( ( A i^i B ) = (/) <-> A. x e. A -. x e. B ) |