This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for upgrimwlk and upgrimwlklen . (Contributed by AV, 25-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimwlk.f | |- ( ph -> F e. Word dom I ) |
||
| Assertion | upgrimwlklem1 | |- ( ph -> ( # ` E ) = ( # ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimwlk.f | |- ( ph -> F e. Word dom I ) |
|
| 8 | fvexd | |- ( ( ph /\ x e. dom F ) -> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. _V ) |
|
| 9 | 8 | ralrimiva | |- ( ph -> A. x e. dom F ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. _V ) |
| 10 | eqid | |- ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 11 | 10 | fnmpt | |- ( A. x e. dom F ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) e. _V -> ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) Fn dom F ) |
| 12 | 9 11 | syl | |- ( ph -> ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) Fn dom F ) |
| 13 | 6 | fneq1i | |- ( E Fn dom F <-> ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) Fn dom F ) |
| 14 | 12 13 | sylibr | |- ( ph -> E Fn dom F ) |
| 15 | hashfn | |- ( E Fn dom F -> ( # ` E ) = ( # ` dom F ) ) |
|
| 16 | 14 15 | syl | |- ( ph -> ( # ` E ) = ( # ` dom F ) ) |
| 17 | wrdf | |- ( F e. Word dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 18 | ffun | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> Fun F ) |
|
| 19 | 7 17 18 | 3syl | |- ( ph -> Fun F ) |
| 20 | 19 | funfnd | |- ( ph -> F Fn dom F ) |
| 21 | hashfn | |- ( F Fn dom F -> ( # ` F ) = ( # ` dom F ) ) |
|
| 22 | 20 21 | syl | |- ( ph -> ( # ` F ) = ( # ` dom F ) ) |
| 23 | 16 22 | eqtr4d | |- ( ph -> ( # ` E ) = ( # ` F ) ) |