This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphisms between simple pseudographs map simple paths onto simple paths. (Contributed by AV, 31-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimspths.s | |- ( ph -> F ( SPaths ` G ) P ) |
||
| Assertion | upgrimspths | |- ( ph -> E ( SPaths ` H ) ( N o. P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimspths.s | |- ( ph -> F ( SPaths ` G ) P ) |
|
| 8 | spthispth | |- ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) |
|
| 9 | pthistrl | |- ( F ( Paths ` G ) P -> F ( Trails ` G ) P ) |
|
| 10 | 7 8 9 | 3syl | |- ( ph -> F ( Trails ` G ) P ) |
| 11 | 1 2 3 4 5 6 10 | upgrimtrls | |- ( ph -> E ( Trails ` H ) ( N o. P ) ) |
| 12 | isspth | |- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
|
| 13 | 12 | simprbi | |- ( F ( SPaths ` G ) P -> Fun `' P ) |
| 14 | 7 13 | syl | |- ( ph -> Fun `' P ) |
| 15 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 16 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 17 | 15 16 | grimf1o | |- ( N e. ( G GraphIso H ) -> N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
| 18 | dff1o3 | |- ( N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) <-> ( N : ( Vtx ` G ) -onto-> ( Vtx ` H ) /\ Fun `' N ) ) |
|
| 19 | 18 | simprbi | |- ( N : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> Fun `' N ) |
| 20 | 5 17 19 | 3syl | |- ( ph -> Fun `' N ) |
| 21 | funco | |- ( ( Fun `' P /\ Fun `' N ) -> Fun ( `' P o. `' N ) ) |
|
| 22 | 14 20 21 | syl2anc | |- ( ph -> Fun ( `' P o. `' N ) ) |
| 23 | cnvco | |- `' ( N o. P ) = ( `' P o. `' N ) |
|
| 24 | 23 | funeqi | |- ( Fun `' ( N o. P ) <-> Fun ( `' P o. `' N ) ) |
| 25 | 22 24 | sylibr | |- ( ph -> Fun `' ( N o. P ) ) |
| 26 | isspth | |- ( E ( SPaths ` H ) ( N o. P ) <-> ( E ( Trails ` H ) ( N o. P ) /\ Fun `' ( N o. P ) ) ) |
|
| 27 | 11 25 26 | sylanbrc | |- ( ph -> E ( SPaths ` H ) ( N o. P ) ) |