This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An even more direct relationship than r1tskina to get an inaccessible cardinal out of a Tarski class: the size of any nonempty Tarski class is an inaccessible cardinal. (Contributed by Mario Carneiro, 9-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskcard | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( card ` T ) e. Inacc ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardeq0 | |- ( T e. Tarski -> ( ( card ` T ) = (/) <-> T = (/) ) ) |
|
| 2 | 1 | necon3bid | |- ( T e. Tarski -> ( ( card ` T ) =/= (/) <-> T =/= (/) ) ) |
| 3 | 2 | biimpar | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( card ` T ) =/= (/) ) |
| 4 | eqid | |- ( z e. ( cf ` ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) |-> ( har ` ( w ` z ) ) ) = ( z e. ( cf ` ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) |-> ( har ` ( w ` z ) ) ) |
|
| 5 | 4 | pwcfsdom | |- ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ~< ( ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ^m ( cf ` ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) ) |
| 6 | vpwex | |- ~P x e. _V |
|
| 7 | 6 | canth2 | |- ~P x ~< ~P ~P x |
| 8 | simpl | |- ( ( T e. Tarski /\ x e. ( card ` T ) ) -> T e. Tarski ) |
|
| 9 | cardon | |- ( card ` T ) e. On |
|
| 10 | 9 | oneli | |- ( x e. ( card ` T ) -> x e. On ) |
| 11 | 10 | adantl | |- ( ( T e. Tarski /\ x e. ( card ` T ) ) -> x e. On ) |
| 12 | cardsdomelir | |- ( x e. ( card ` T ) -> x ~< T ) |
|
| 13 | 12 | adantl | |- ( ( T e. Tarski /\ x e. ( card ` T ) ) -> x ~< T ) |
| 14 | tskord | |- ( ( T e. Tarski /\ x e. On /\ x ~< T ) -> x e. T ) |
|
| 15 | 8 11 13 14 | syl3anc | |- ( ( T e. Tarski /\ x e. ( card ` T ) ) -> x e. T ) |
| 16 | tskpw | |- ( ( T e. Tarski /\ x e. T ) -> ~P x e. T ) |
|
| 17 | tskpwss | |- ( ( T e. Tarski /\ ~P x e. T ) -> ~P ~P x C_ T ) |
|
| 18 | 16 17 | syldan | |- ( ( T e. Tarski /\ x e. T ) -> ~P ~P x C_ T ) |
| 19 | 15 18 | syldan | |- ( ( T e. Tarski /\ x e. ( card ` T ) ) -> ~P ~P x C_ T ) |
| 20 | ssdomg | |- ( T e. Tarski -> ( ~P ~P x C_ T -> ~P ~P x ~<_ T ) ) |
|
| 21 | 8 19 20 | sylc | |- ( ( T e. Tarski /\ x e. ( card ` T ) ) -> ~P ~P x ~<_ T ) |
| 22 | cardidg | |- ( T e. Tarski -> ( card ` T ) ~~ T ) |
|
| 23 | 22 | ensymd | |- ( T e. Tarski -> T ~~ ( card ` T ) ) |
| 24 | 23 | adantr | |- ( ( T e. Tarski /\ x e. ( card ` T ) ) -> T ~~ ( card ` T ) ) |
| 25 | domentr | |- ( ( ~P ~P x ~<_ T /\ T ~~ ( card ` T ) ) -> ~P ~P x ~<_ ( card ` T ) ) |
|
| 26 | 21 24 25 | syl2anc | |- ( ( T e. Tarski /\ x e. ( card ` T ) ) -> ~P ~P x ~<_ ( card ` T ) ) |
| 27 | sdomdomtr | |- ( ( ~P x ~< ~P ~P x /\ ~P ~P x ~<_ ( card ` T ) ) -> ~P x ~< ( card ` T ) ) |
|
| 28 | 7 26 27 | sylancr | |- ( ( T e. Tarski /\ x e. ( card ` T ) ) -> ~P x ~< ( card ` T ) ) |
| 29 | 28 | ralrimiva | |- ( T e. Tarski -> A. x e. ( card ` T ) ~P x ~< ( card ` T ) ) |
| 30 | 29 | adantr | |- ( ( T e. Tarski /\ T =/= (/) ) -> A. x e. ( card ` T ) ~P x ~< ( card ` T ) ) |
| 31 | inawinalem | |- ( ( card ` T ) e. On -> ( A. x e. ( card ` T ) ~P x ~< ( card ` T ) -> A. x e. ( card ` T ) E. y e. ( card ` T ) x ~< y ) ) |
|
| 32 | 9 31 | ax-mp | |- ( A. x e. ( card ` T ) ~P x ~< ( card ` T ) -> A. x e. ( card ` T ) E. y e. ( card ` T ) x ~< y ) |
| 33 | winainflem | |- ( ( ( card ` T ) =/= (/) /\ ( card ` T ) e. On /\ A. x e. ( card ` T ) E. y e. ( card ` T ) x ~< y ) -> _om C_ ( card ` T ) ) |
|
| 34 | 9 33 | mp3an2 | |- ( ( ( card ` T ) =/= (/) /\ A. x e. ( card ` T ) E. y e. ( card ` T ) x ~< y ) -> _om C_ ( card ` T ) ) |
| 35 | 32 34 | sylan2 | |- ( ( ( card ` T ) =/= (/) /\ A. x e. ( card ` T ) ~P x ~< ( card ` T ) ) -> _om C_ ( card ` T ) ) |
| 36 | 3 30 35 | syl2anc | |- ( ( T e. Tarski /\ T =/= (/) ) -> _om C_ ( card ` T ) ) |
| 37 | cardidm | |- ( card ` ( card ` T ) ) = ( card ` T ) |
|
| 38 | cardaleph | |- ( ( _om C_ ( card ` T ) /\ ( card ` ( card ` T ) ) = ( card ` T ) ) -> ( card ` T ) = ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) |
|
| 39 | 36 37 38 | sylancl | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( card ` T ) = ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) |
| 40 | 39 | fveq2d | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( cf ` ( card ` T ) ) = ( cf ` ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) ) |
| 41 | 39 40 | oveq12d | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) = ( ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ^m ( cf ` ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) ) ) |
| 42 | 39 41 | breq12d | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( ( card ` T ) ~< ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) <-> ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ~< ( ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ^m ( cf ` ( aleph ` |^| { x e. On | ( card ` T ) C_ ( aleph ` x ) } ) ) ) ) ) |
| 43 | 5 42 | mpbiri | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( card ` T ) ~< ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) |
| 44 | simp1 | |- ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) /\ x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) -> T e. Tarski ) |
|
| 45 | simp3 | |- ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) /\ x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) -> x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) |
|
| 46 | fvex | |- ( card ` T ) e. _V |
|
| 47 | fvex | |- ( cf ` ( card ` T ) ) e. _V |
|
| 48 | 46 47 | elmap | |- ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) <-> x : ( cf ` ( card ` T ) ) --> ( card ` T ) ) |
| 49 | fssxp | |- ( x : ( cf ` ( card ` T ) ) --> ( card ` T ) -> x C_ ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) ) |
|
| 50 | 48 49 | sylbi | |- ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) -> x C_ ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) ) |
| 51 | 15 | ex | |- ( T e. Tarski -> ( x e. ( card ` T ) -> x e. T ) ) |
| 52 | 51 | ssrdv | |- ( T e. Tarski -> ( card ` T ) C_ T ) |
| 53 | cfle | |- ( cf ` ( card ` T ) ) C_ ( card ` T ) |
|
| 54 | sstr | |- ( ( ( cf ` ( card ` T ) ) C_ ( card ` T ) /\ ( card ` T ) C_ T ) -> ( cf ` ( card ` T ) ) C_ T ) |
|
| 55 | 53 54 | mpan | |- ( ( card ` T ) C_ T -> ( cf ` ( card ` T ) ) C_ T ) |
| 56 | tskxpss | |- ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) C_ T /\ ( card ` T ) C_ T ) -> ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) C_ T ) |
|
| 57 | 56 | 3exp | |- ( T e. Tarski -> ( ( cf ` ( card ` T ) ) C_ T -> ( ( card ` T ) C_ T -> ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) C_ T ) ) ) |
| 58 | 57 | com23 | |- ( T e. Tarski -> ( ( card ` T ) C_ T -> ( ( cf ` ( card ` T ) ) C_ T -> ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) C_ T ) ) ) |
| 59 | 55 58 | mpdi | |- ( T e. Tarski -> ( ( card ` T ) C_ T -> ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) C_ T ) ) |
| 60 | 52 59 | mpd | |- ( T e. Tarski -> ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) C_ T ) |
| 61 | sstr2 | |- ( x C_ ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) -> ( ( ( cf ` ( card ` T ) ) X. ( card ` T ) ) C_ T -> x C_ T ) ) |
|
| 62 | 50 60 61 | syl2im | |- ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) -> ( T e. Tarski -> x C_ T ) ) |
| 63 | 45 44 62 | sylc | |- ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) /\ x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) -> x C_ T ) |
| 64 | simp2 | |- ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) /\ x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) -> ( cf ` ( card ` T ) ) e. ( card ` T ) ) |
|
| 65 | ffn | |- ( x : ( cf ` ( card ` T ) ) --> ( card ` T ) -> x Fn ( cf ` ( card ` T ) ) ) |
|
| 66 | fndmeng | |- ( ( x Fn ( cf ` ( card ` T ) ) /\ ( cf ` ( card ` T ) ) e. _V ) -> ( cf ` ( card ` T ) ) ~~ x ) |
|
| 67 | 65 47 66 | sylancl | |- ( x : ( cf ` ( card ` T ) ) --> ( card ` T ) -> ( cf ` ( card ` T ) ) ~~ x ) |
| 68 | 48 67 | sylbi | |- ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) -> ( cf ` ( card ` T ) ) ~~ x ) |
| 69 | 68 | ensymd | |- ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) -> x ~~ ( cf ` ( card ` T ) ) ) |
| 70 | cardsdomelir | |- ( ( cf ` ( card ` T ) ) e. ( card ` T ) -> ( cf ` ( card ` T ) ) ~< T ) |
|
| 71 | ensdomtr | |- ( ( x ~~ ( cf ` ( card ` T ) ) /\ ( cf ` ( card ` T ) ) ~< T ) -> x ~< T ) |
|
| 72 | 69 70 71 | syl2an | |- ( ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> x ~< T ) |
| 73 | 45 64 72 | syl2anc | |- ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) /\ x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) -> x ~< T ) |
| 74 | tskssel | |- ( ( T e. Tarski /\ x C_ T /\ x ~< T ) -> x e. T ) |
|
| 75 | 44 63 73 74 | syl3anc | |- ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) /\ x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) -> x e. T ) |
| 76 | 75 | 3expia | |- ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> ( x e. ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) -> x e. T ) ) |
| 77 | 76 | ssrdv | |- ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) C_ T ) |
| 78 | ssdomg | |- ( T e. Tarski -> ( ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) C_ T -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ T ) ) |
|
| 79 | 78 | imp | |- ( ( T e. Tarski /\ ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) C_ T ) -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ T ) |
| 80 | 77 79 | syldan | |- ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ T ) |
| 81 | 23 | adantr | |- ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> T ~~ ( card ` T ) ) |
| 82 | domentr | |- ( ( ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ T /\ T ~~ ( card ` T ) ) -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ ( card ` T ) ) |
|
| 83 | 80 81 82 | syl2anc | |- ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ ( card ` T ) ) |
| 84 | domnsym | |- ( ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ~<_ ( card ` T ) -> -. ( card ` T ) ~< ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) |
|
| 85 | 83 84 | syl | |- ( ( T e. Tarski /\ ( cf ` ( card ` T ) ) e. ( card ` T ) ) -> -. ( card ` T ) ~< ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) |
| 86 | 85 | ex | |- ( T e. Tarski -> ( ( cf ` ( card ` T ) ) e. ( card ` T ) -> -. ( card ` T ) ~< ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) ) |
| 87 | 86 | adantr | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( ( cf ` ( card ` T ) ) e. ( card ` T ) -> -. ( card ` T ) ~< ( ( card ` T ) ^m ( cf ` ( card ` T ) ) ) ) ) |
| 88 | 43 87 | mt2d | |- ( ( T e. Tarski /\ T =/= (/) ) -> -. ( cf ` ( card ` T ) ) e. ( card ` T ) ) |
| 89 | cfon | |- ( cf ` ( card ` T ) ) e. On |
|
| 90 | 89 9 | onsseli | |- ( ( cf ` ( card ` T ) ) C_ ( card ` T ) <-> ( ( cf ` ( card ` T ) ) e. ( card ` T ) \/ ( cf ` ( card ` T ) ) = ( card ` T ) ) ) |
| 91 | 53 90 | mpbi | |- ( ( cf ` ( card ` T ) ) e. ( card ` T ) \/ ( cf ` ( card ` T ) ) = ( card ` T ) ) |
| 92 | 91 | ori | |- ( -. ( cf ` ( card ` T ) ) e. ( card ` T ) -> ( cf ` ( card ` T ) ) = ( card ` T ) ) |
| 93 | 88 92 | syl | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( cf ` ( card ` T ) ) = ( card ` T ) ) |
| 94 | elina | |- ( ( card ` T ) e. Inacc <-> ( ( card ` T ) =/= (/) /\ ( cf ` ( card ` T ) ) = ( card ` T ) /\ A. x e. ( card ` T ) ~P x ~< ( card ` T ) ) ) |
|
| 95 | 3 93 30 94 | syl3anbrc | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( card ` T ) e. Inacc ) |