This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for inawina . (Contributed by Mario Carneiro, 8-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inawinalem | |- ( A e. On -> ( A. x e. A ~P x ~< A -> A. x e. A E. y e. A x ~< y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | |- ( ~P x ~< A -> ~P x ~<_ A ) |
|
| 2 | ondomen | |- ( ( A e. On /\ ~P x ~<_ A ) -> ~P x e. dom card ) |
|
| 3 | isnum2 | |- ( ~P x e. dom card <-> E. y e. On y ~~ ~P x ) |
|
| 4 | 2 3 | sylib | |- ( ( A e. On /\ ~P x ~<_ A ) -> E. y e. On y ~~ ~P x ) |
| 5 | 1 4 | sylan2 | |- ( ( A e. On /\ ~P x ~< A ) -> E. y e. On y ~~ ~P x ) |
| 6 | ensdomtr | |- ( ( y ~~ ~P x /\ ~P x ~< A ) -> y ~< A ) |
|
| 7 | 6 | ad2ant2l | |- ( ( ( y e. On /\ y ~~ ~P x ) /\ ( A e. On /\ ~P x ~< A ) ) -> y ~< A ) |
| 8 | sdomel | |- ( ( y e. On /\ A e. On ) -> ( y ~< A -> y e. A ) ) |
|
| 9 | 8 | ad2ant2r | |- ( ( ( y e. On /\ y ~~ ~P x ) /\ ( A e. On /\ ~P x ~< A ) ) -> ( y ~< A -> y e. A ) ) |
| 10 | 7 9 | mpd | |- ( ( ( y e. On /\ y ~~ ~P x ) /\ ( A e. On /\ ~P x ~< A ) ) -> y e. A ) |
| 11 | vex | |- x e. _V |
|
| 12 | 11 | canth2 | |- x ~< ~P x |
| 13 | ensym | |- ( y ~~ ~P x -> ~P x ~~ y ) |
|
| 14 | sdomentr | |- ( ( x ~< ~P x /\ ~P x ~~ y ) -> x ~< y ) |
|
| 15 | 12 13 14 | sylancr | |- ( y ~~ ~P x -> x ~< y ) |
| 16 | 15 | ad2antlr | |- ( ( ( y e. On /\ y ~~ ~P x ) /\ ( A e. On /\ ~P x ~< A ) ) -> x ~< y ) |
| 17 | 10 16 | jca | |- ( ( ( y e. On /\ y ~~ ~P x ) /\ ( A e. On /\ ~P x ~< A ) ) -> ( y e. A /\ x ~< y ) ) |
| 18 | 17 | expcom | |- ( ( A e. On /\ ~P x ~< A ) -> ( ( y e. On /\ y ~~ ~P x ) -> ( y e. A /\ x ~< y ) ) ) |
| 19 | 18 | reximdv2 | |- ( ( A e. On /\ ~P x ~< A ) -> ( E. y e. On y ~~ ~P x -> E. y e. A x ~< y ) ) |
| 20 | 5 19 | mpd | |- ( ( A e. On /\ ~P x ~< A ) -> E. y e. A x ~< y ) |
| 21 | 20 | ex | |- ( A e. On -> ( ~P x ~< A -> E. y e. A x ~< y ) ) |
| 22 | 21 | ralimdv | |- ( A e. On -> ( A. x e. A ~P x ~< A -> A. x e. A E. y e. A x ~< y ) ) |