This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Tarski class contains all ordinals smaller than it. (Contributed by Mario Carneiro, 8-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskord | |- ( ( T e. Tarski /\ A e. On /\ A ~< T ) -> A e. T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( x = y -> ( x ~< T <-> y ~< T ) ) |
|
| 2 | 1 | anbi2d | |- ( x = y -> ( ( T e. Tarski /\ x ~< T ) <-> ( T e. Tarski /\ y ~< T ) ) ) |
| 3 | eleq1 | |- ( x = y -> ( x e. T <-> y e. T ) ) |
|
| 4 | 2 3 | imbi12d | |- ( x = y -> ( ( ( T e. Tarski /\ x ~< T ) -> x e. T ) <-> ( ( T e. Tarski /\ y ~< T ) -> y e. T ) ) ) |
| 5 | breq1 | |- ( x = A -> ( x ~< T <-> A ~< T ) ) |
|
| 6 | 5 | anbi2d | |- ( x = A -> ( ( T e. Tarski /\ x ~< T ) <-> ( T e. Tarski /\ A ~< T ) ) ) |
| 7 | eleq1 | |- ( x = A -> ( x e. T <-> A e. T ) ) |
|
| 8 | 6 7 | imbi12d | |- ( x = A -> ( ( ( T e. Tarski /\ x ~< T ) -> x e. T ) <-> ( ( T e. Tarski /\ A ~< T ) -> A e. T ) ) ) |
| 9 | simplrl | |- ( ( ( x e. On /\ ( T e. Tarski /\ x ~< T ) ) /\ y e. x ) -> T e. Tarski ) |
|
| 10 | onelss | |- ( x e. On -> ( y e. x -> y C_ x ) ) |
|
| 11 | ssdomg | |- ( x e. On -> ( y C_ x -> y ~<_ x ) ) |
|
| 12 | 10 11 | syld | |- ( x e. On -> ( y e. x -> y ~<_ x ) ) |
| 13 | 12 | imp | |- ( ( x e. On /\ y e. x ) -> y ~<_ x ) |
| 14 | 13 | adantlr | |- ( ( ( x e. On /\ ( T e. Tarski /\ x ~< T ) ) /\ y e. x ) -> y ~<_ x ) |
| 15 | simplrr | |- ( ( ( x e. On /\ ( T e. Tarski /\ x ~< T ) ) /\ y e. x ) -> x ~< T ) |
|
| 16 | domsdomtr | |- ( ( y ~<_ x /\ x ~< T ) -> y ~< T ) |
|
| 17 | 14 15 16 | syl2anc | |- ( ( ( x e. On /\ ( T e. Tarski /\ x ~< T ) ) /\ y e. x ) -> y ~< T ) |
| 18 | pm2.27 | |- ( ( T e. Tarski /\ y ~< T ) -> ( ( ( T e. Tarski /\ y ~< T ) -> y e. T ) -> y e. T ) ) |
|
| 19 | 9 17 18 | syl2anc | |- ( ( ( x e. On /\ ( T e. Tarski /\ x ~< T ) ) /\ y e. x ) -> ( ( ( T e. Tarski /\ y ~< T ) -> y e. T ) -> y e. T ) ) |
| 20 | 19 | ralimdva | |- ( ( x e. On /\ ( T e. Tarski /\ x ~< T ) ) -> ( A. y e. x ( ( T e. Tarski /\ y ~< T ) -> y e. T ) -> A. y e. x y e. T ) ) |
| 21 | dfss3 | |- ( x C_ T <-> A. y e. x y e. T ) |
|
| 22 | tskssel | |- ( ( T e. Tarski /\ x C_ T /\ x ~< T ) -> x e. T ) |
|
| 23 | 22 | 3exp | |- ( T e. Tarski -> ( x C_ T -> ( x ~< T -> x e. T ) ) ) |
| 24 | 21 23 | biimtrrid | |- ( T e. Tarski -> ( A. y e. x y e. T -> ( x ~< T -> x e. T ) ) ) |
| 25 | 24 | com23 | |- ( T e. Tarski -> ( x ~< T -> ( A. y e. x y e. T -> x e. T ) ) ) |
| 26 | 25 | imp | |- ( ( T e. Tarski /\ x ~< T ) -> ( A. y e. x y e. T -> x e. T ) ) |
| 27 | 26 | adantl | |- ( ( x e. On /\ ( T e. Tarski /\ x ~< T ) ) -> ( A. y e. x y e. T -> x e. T ) ) |
| 28 | 20 27 | syld | |- ( ( x e. On /\ ( T e. Tarski /\ x ~< T ) ) -> ( A. y e. x ( ( T e. Tarski /\ y ~< T ) -> y e. T ) -> x e. T ) ) |
| 29 | 28 | ex | |- ( x e. On -> ( ( T e. Tarski /\ x ~< T ) -> ( A. y e. x ( ( T e. Tarski /\ y ~< T ) -> y e. T ) -> x e. T ) ) ) |
| 30 | 29 | com23 | |- ( x e. On -> ( A. y e. x ( ( T e. Tarski /\ y ~< T ) -> y e. T ) -> ( ( T e. Tarski /\ x ~< T ) -> x e. T ) ) ) |
| 31 | 4 8 30 | tfis3 | |- ( A e. On -> ( ( T e. Tarski /\ A ~< T ) -> A e. T ) ) |
| 32 | 31 | 3impib | |- ( ( A e. On /\ T e. Tarski /\ A ~< T ) -> A e. T ) |
| 33 | 32 | 3com12 | |- ( ( T e. Tarski /\ A e. On /\ A ~< T ) -> A e. T ) |