This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: First axiom of a Tarski class. The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010) (Proof shortened by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskpwss | |- ( ( T e. Tarski /\ A e. T ) -> ~P A C_ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltskg | |- ( T e. Tarski -> ( T e. Tarski <-> ( A. x e. T ( ~P x C_ T /\ E. y e. T ~P x C_ y ) /\ A. x e. ~P T ( x ~~ T \/ x e. T ) ) ) ) |
|
| 2 | 1 | ibi | |- ( T e. Tarski -> ( A. x e. T ( ~P x C_ T /\ E. y e. T ~P x C_ y ) /\ A. x e. ~P T ( x ~~ T \/ x e. T ) ) ) |
| 3 | 2 | simpld | |- ( T e. Tarski -> A. x e. T ( ~P x C_ T /\ E. y e. T ~P x C_ y ) ) |
| 4 | simpl | |- ( ( ~P x C_ T /\ E. y e. T ~P x C_ y ) -> ~P x C_ T ) |
|
| 5 | 4 | ralimi | |- ( A. x e. T ( ~P x C_ T /\ E. y e. T ~P x C_ y ) -> A. x e. T ~P x C_ T ) |
| 6 | 3 5 | syl | |- ( T e. Tarski -> A. x e. T ~P x C_ T ) |
| 7 | pweq | |- ( x = A -> ~P x = ~P A ) |
|
| 8 | 7 | sseq1d | |- ( x = A -> ( ~P x C_ T <-> ~P A C_ T ) ) |
| 9 | 8 | rspccva | |- ( ( A. x e. T ~P x C_ T /\ A e. T ) -> ~P A C_ T ) |
| 10 | 6 9 | sylan | |- ( ( T e. Tarski /\ A e. T ) -> ~P A C_ T ) |