This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskxpss | |- ( ( T e. Tarski /\ A C_ T /\ B C_ T ) -> ( A X. B ) C_ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 | |- ( z e. ( T X. T ) <-> E. x e. T E. y e. T z = <. x , y >. ) |
|
| 2 | tskop | |- ( ( T e. Tarski /\ x e. T /\ y e. T ) -> <. x , y >. e. T ) |
|
| 3 | eleq1a | |- ( <. x , y >. e. T -> ( z = <. x , y >. -> z e. T ) ) |
|
| 4 | 2 3 | syl | |- ( ( T e. Tarski /\ x e. T /\ y e. T ) -> ( z = <. x , y >. -> z e. T ) ) |
| 5 | 4 | 3expib | |- ( T e. Tarski -> ( ( x e. T /\ y e. T ) -> ( z = <. x , y >. -> z e. T ) ) ) |
| 6 | 5 | rexlimdvv | |- ( T e. Tarski -> ( E. x e. T E. y e. T z = <. x , y >. -> z e. T ) ) |
| 7 | 1 6 | biimtrid | |- ( T e. Tarski -> ( z e. ( T X. T ) -> z e. T ) ) |
| 8 | 7 | ssrdv | |- ( T e. Tarski -> ( T X. T ) C_ T ) |
| 9 | xpss12 | |- ( ( A C_ T /\ B C_ T ) -> ( A X. B ) C_ ( T X. T ) ) |
|
| 10 | sstr | |- ( ( ( A X. B ) C_ ( T X. T ) /\ ( T X. T ) C_ T ) -> ( A X. B ) C_ T ) |
|
| 11 | 10 | expcom | |- ( ( T X. T ) C_ T -> ( ( A X. B ) C_ ( T X. T ) -> ( A X. B ) C_ T ) ) |
| 12 | 8 9 11 | syl2im | |- ( T e. Tarski -> ( ( A C_ T /\ B C_ T ) -> ( A X. B ) C_ T ) ) |
| 13 | 12 | 3impib | |- ( ( T e. Tarski /\ A C_ T /\ B C_ T ) -> ( A X. B ) C_ T ) |