This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elina | |- ( A e. Inacc <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. Inacc -> A e. _V ) |
|
| 2 | fvex | |- ( cf ` A ) e. _V |
|
| 3 | eleq1 | |- ( ( cf ` A ) = A -> ( ( cf ` A ) e. _V <-> A e. _V ) ) |
|
| 4 | 2 3 | mpbii | |- ( ( cf ` A ) = A -> A e. _V ) |
| 5 | 4 | 3ad2ant2 | |- ( ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) -> A e. _V ) |
| 6 | neeq1 | |- ( y = A -> ( y =/= (/) <-> A =/= (/) ) ) |
|
| 7 | fveq2 | |- ( y = A -> ( cf ` y ) = ( cf ` A ) ) |
|
| 8 | eqeq12 | |- ( ( ( cf ` y ) = ( cf ` A ) /\ y = A ) -> ( ( cf ` y ) = y <-> ( cf ` A ) = A ) ) |
|
| 9 | 7 8 | mpancom | |- ( y = A -> ( ( cf ` y ) = y <-> ( cf ` A ) = A ) ) |
| 10 | breq2 | |- ( y = A -> ( ~P x ~< y <-> ~P x ~< A ) ) |
|
| 11 | 10 | raleqbi1dv | |- ( y = A -> ( A. x e. y ~P x ~< y <-> A. x e. A ~P x ~< A ) ) |
| 12 | 6 9 11 | 3anbi123d | |- ( y = A -> ( ( y =/= (/) /\ ( cf ` y ) = y /\ A. x e. y ~P x ~< y ) <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) ) ) |
| 13 | df-ina | |- Inacc = { y | ( y =/= (/) /\ ( cf ` y ) = y /\ A. x e. y ~P x ~< y ) } |
|
| 14 | 12 13 | elab2g | |- ( A e. _V -> ( A e. Inacc <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) ) ) |
| 15 | 1 5 14 | pm5.21nii | |- ( A e. Inacc <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) ) |