This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of Gleason p. 133. (Contributed by NM, 27-Jul-1999) (Revised by Mario Carneiro, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absval | |- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = A -> ( * ` x ) = ( * ` A ) ) |
|
| 2 | oveq12 | |- ( ( x = A /\ ( * ` x ) = ( * ` A ) ) -> ( x x. ( * ` x ) ) = ( A x. ( * ` A ) ) ) |
|
| 3 | 1 2 | mpdan | |- ( x = A -> ( x x. ( * ` x ) ) = ( A x. ( * ` A ) ) ) |
| 4 | 3 | fveq2d | |- ( x = A -> ( sqrt ` ( x x. ( * ` x ) ) ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
| 5 | df-abs | |- abs = ( x e. CC |-> ( sqrt ` ( x x. ( * ` x ) ) ) ) |
|
| 6 | fvex | |- ( sqrt ` ( A x. ( * ` A ) ) ) e. _V |
|
| 7 | 4 5 6 | fvmpt | |- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |