This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clm0.f | |- F = ( Scalar ` W ) |
|
| Assertion | clmmul | |- ( W e. CMod -> x. = ( .r ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | |- F = ( Scalar ` W ) |
|
| 2 | fvex | |- ( Base ` F ) e. _V |
|
| 3 | eqid | |- ( CCfld |`s ( Base ` F ) ) = ( CCfld |`s ( Base ` F ) ) |
|
| 4 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 5 | 3 4 | ressmulr | |- ( ( Base ` F ) e. _V -> x. = ( .r ` ( CCfld |`s ( Base ` F ) ) ) ) |
| 6 | 2 5 | ax-mp | |- x. = ( .r ` ( CCfld |`s ( Base ` F ) ) ) |
| 7 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 8 | 1 7 | clmsca | |- ( W e. CMod -> F = ( CCfld |`s ( Base ` F ) ) ) |
| 9 | 8 | fveq2d | |- ( W e. CMod -> ( .r ` F ) = ( .r ` ( CCfld |`s ( Base ` F ) ) ) ) |
| 10 | 6 9 | eqtr4id | |- ( W e. CMod -> x. = ( .r ` F ) ) |