This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Associative" law for second argument of inner product (compare ipass ). (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | |- F = ( Scalar ` W ) |
|
| phllmhm.h | |- ., = ( .i ` W ) |
||
| phllmhm.v | |- V = ( Base ` W ) |
||
| ipdir.f | |- K = ( Base ` F ) |
||
| ipass.s | |- .x. = ( .s ` W ) |
||
| ipass.p | |- .X. = ( .r ` F ) |
||
| ipassr.i | |- .* = ( *r ` F ) |
||
| Assertion | ipassr | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( A ., ( C .x. B ) ) = ( ( A ., B ) .X. ( .* ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | phllmhm.h | |- ., = ( .i ` W ) |
|
| 3 | phllmhm.v | |- V = ( Base ` W ) |
|
| 4 | ipdir.f | |- K = ( Base ` F ) |
|
| 5 | ipass.s | |- .x. = ( .s ` W ) |
|
| 6 | ipass.p | |- .X. = ( .r ` F ) |
|
| 7 | ipassr.i | |- .* = ( *r ` F ) |
|
| 8 | simpl | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> W e. PreHil ) |
|
| 9 | simpr3 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> C e. K ) |
|
| 10 | simpr2 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> B e. V ) |
|
| 11 | simpr1 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> A e. V ) |
|
| 12 | 1 2 3 4 5 6 | ipass | |- ( ( W e. PreHil /\ ( C e. K /\ B e. V /\ A e. V ) ) -> ( ( C .x. B ) ., A ) = ( C .X. ( B ., A ) ) ) |
| 13 | 8 9 10 11 12 | syl13anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( C .x. B ) ., A ) = ( C .X. ( B ., A ) ) ) |
| 14 | 13 | fveq2d | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( ( C .x. B ) ., A ) ) = ( .* ` ( C .X. ( B ., A ) ) ) ) |
| 15 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 16 | 15 | adantr | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> W e. LMod ) |
| 17 | 3 1 5 4 | lmodvscl | |- ( ( W e. LMod /\ C e. K /\ B e. V ) -> ( C .x. B ) e. V ) |
| 18 | 16 9 10 17 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( C .x. B ) e. V ) |
| 19 | 1 2 3 7 | ipcj | |- ( ( W e. PreHil /\ ( C .x. B ) e. V /\ A e. V ) -> ( .* ` ( ( C .x. B ) ., A ) ) = ( A ., ( C .x. B ) ) ) |
| 20 | 8 18 11 19 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( ( C .x. B ) ., A ) ) = ( A ., ( C .x. B ) ) ) |
| 21 | 1 | phlsrng | |- ( W e. PreHil -> F e. *Ring ) |
| 22 | 21 | adantr | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> F e. *Ring ) |
| 23 | 1 2 3 4 | ipcl | |- ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( B ., A ) e. K ) |
| 24 | 8 10 11 23 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( B ., A ) e. K ) |
| 25 | 7 4 6 | srngmul | |- ( ( F e. *Ring /\ C e. K /\ ( B ., A ) e. K ) -> ( .* ` ( C .X. ( B ., A ) ) ) = ( ( .* ` ( B ., A ) ) .X. ( .* ` C ) ) ) |
| 26 | 22 9 24 25 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( C .X. ( B ., A ) ) ) = ( ( .* ` ( B ., A ) ) .X. ( .* ` C ) ) ) |
| 27 | 14 20 26 | 3eqtr3d | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( A ., ( C .x. B ) ) = ( ( .* ` ( B ., A ) ) .X. ( .* ` C ) ) ) |
| 28 | 1 2 3 7 | ipcj | |- ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( .* ` ( B ., A ) ) = ( A ., B ) ) |
| 29 | 8 10 11 28 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( .* ` ( B ., A ) ) = ( A ., B ) ) |
| 30 | 29 | oveq1d | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( ( .* ` ( B ., A ) ) .X. ( .* ` C ) ) = ( ( A ., B ) .X. ( .* ` C ) ) ) |
| 31 | 27 30 | eqtrd | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. K ) ) -> ( A ., ( C .x. B ) ) = ( ( A ., B ) .X. ( .* ` C ) ) ) |