This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Algebraic manipulation of ( ( B n ) - ( B ( n + 1 ) ) ) . It will be used in other theorems to show that B is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | stirlinglem4.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| stirlinglem4.2 | |- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
||
| stirlinglem4.3 | |- J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) |
||
| Assertion | stirlinglem4 | |- ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( J ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stirlinglem4.1 | |- A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 2 | stirlinglem4.2 | |- B = ( n e. NN |-> ( log ` ( A ` n ) ) ) |
|
| 3 | stirlinglem4.3 | |- J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) |
|
| 4 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 5 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 6 | 5 | nn0ge0d | |- ( N e. NN -> 0 <_ N ) |
| 7 | 4 6 | ge0p1rpd | |- ( N e. NN -> ( N + 1 ) e. RR+ ) |
| 8 | nnrp | |- ( N e. NN -> N e. RR+ ) |
|
| 9 | 7 8 | rpdivcld | |- ( N e. NN -> ( ( N + 1 ) / N ) e. RR+ ) |
| 10 | 9 | rpsqrtcld | |- ( N e. NN -> ( sqrt ` ( ( N + 1 ) / N ) ) e. RR+ ) |
| 11 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 12 | 9 11 | rpexpcld | |- ( N e. NN -> ( ( ( N + 1 ) / N ) ^ N ) e. RR+ ) |
| 13 | 10 12 | rpmulcld | |- ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) e. RR+ ) |
| 14 | epr | |- _e e. RR+ |
|
| 15 | 14 | a1i | |- ( N e. NN -> _e e. RR+ ) |
| 16 | 13 15 | relogdivd | |- ( N e. NN -> ( log ` ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) = ( ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) - ( log ` _e ) ) ) |
| 17 | 10 12 | relogmuld | |- ( N e. NN -> ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) = ( ( log ` ( sqrt ` ( ( N + 1 ) / N ) ) ) + ( log ` ( ( ( N + 1 ) / N ) ^ N ) ) ) ) |
| 18 | logsqrt | |- ( ( ( N + 1 ) / N ) e. RR+ -> ( log ` ( sqrt ` ( ( N + 1 ) / N ) ) ) = ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) ) |
|
| 19 | 9 18 | syl | |- ( N e. NN -> ( log ` ( sqrt ` ( ( N + 1 ) / N ) ) ) = ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) ) |
| 20 | relogexp | |- ( ( ( ( N + 1 ) / N ) e. RR+ /\ N e. ZZ ) -> ( log ` ( ( ( N + 1 ) / N ) ^ N ) ) = ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
|
| 21 | 9 11 20 | syl2anc | |- ( N e. NN -> ( log ` ( ( ( N + 1 ) / N ) ^ N ) ) = ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 22 | 19 21 | oveq12d | |- ( N e. NN -> ( ( log ` ( sqrt ` ( ( N + 1 ) / N ) ) ) + ( log ` ( ( ( N + 1 ) / N ) ^ N ) ) ) = ( ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) ) |
| 23 | 17 22 | eqtrd | |- ( N e. NN -> ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) = ( ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) ) |
| 24 | peano2nn | |- ( N e. NN -> ( N + 1 ) e. NN ) |
|
| 25 | 24 | nncnd | |- ( N e. NN -> ( N + 1 ) e. CC ) |
| 26 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 27 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 28 | 25 26 27 | divcld | |- ( N e. NN -> ( ( N + 1 ) / N ) e. CC ) |
| 29 | 24 | nnne0d | |- ( N e. NN -> ( N + 1 ) =/= 0 ) |
| 30 | 25 26 29 27 | divne0d | |- ( N e. NN -> ( ( N + 1 ) / N ) =/= 0 ) |
| 31 | 28 30 | logcld | |- ( N e. NN -> ( log ` ( ( N + 1 ) / N ) ) e. CC ) |
| 32 | 2cnd | |- ( N e. NN -> 2 e. CC ) |
|
| 33 | 2rp | |- 2 e. RR+ |
|
| 34 | 33 | a1i | |- ( N e. NN -> 2 e. RR+ ) |
| 35 | 34 | rpne0d | |- ( N e. NN -> 2 =/= 0 ) |
| 36 | 31 32 35 | divrec2d | |- ( N e. NN -> ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) = ( ( 1 / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 37 | 36 | oveq1d | |- ( N e. NN -> ( ( ( log ` ( ( N + 1 ) / N ) ) / 2 ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) ) |
| 38 | 1cnd | |- ( N e. NN -> 1 e. CC ) |
|
| 39 | 38 | halfcld | |- ( N e. NN -> ( 1 / 2 ) e. CC ) |
| 40 | 39 26 31 | adddird | |- ( N e. NN -> ( ( ( 1 / 2 ) + N ) x. ( log ` ( ( N + 1 ) / N ) ) ) = ( ( ( 1 / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) ) |
| 41 | 26 32 35 | divcan4d | |- ( N e. NN -> ( ( N x. 2 ) / 2 ) = N ) |
| 42 | 26 32 | mulcomd | |- ( N e. NN -> ( N x. 2 ) = ( 2 x. N ) ) |
| 43 | 42 | oveq1d | |- ( N e. NN -> ( ( N x. 2 ) / 2 ) = ( ( 2 x. N ) / 2 ) ) |
| 44 | 41 43 | eqtr3d | |- ( N e. NN -> N = ( ( 2 x. N ) / 2 ) ) |
| 45 | 44 | oveq2d | |- ( N e. NN -> ( ( 1 / 2 ) + N ) = ( ( 1 / 2 ) + ( ( 2 x. N ) / 2 ) ) ) |
| 46 | 32 26 | mulcld | |- ( N e. NN -> ( 2 x. N ) e. CC ) |
| 47 | 38 46 32 35 | divdird | |- ( N e. NN -> ( ( 1 + ( 2 x. N ) ) / 2 ) = ( ( 1 / 2 ) + ( ( 2 x. N ) / 2 ) ) ) |
| 48 | 45 47 | eqtr4d | |- ( N e. NN -> ( ( 1 / 2 ) + N ) = ( ( 1 + ( 2 x. N ) ) / 2 ) ) |
| 49 | 48 | oveq1d | |- ( N e. NN -> ( ( ( 1 / 2 ) + N ) x. ( log ` ( ( N + 1 ) / N ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 50 | 40 49 | eqtr3d | |- ( N e. NN -> ( ( ( 1 / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) + ( N x. ( log ` ( ( N + 1 ) / N ) ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 51 | 23 37 50 | 3eqtrd | |- ( N e. NN -> ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 52 | loge | |- ( log ` _e ) = 1 |
|
| 53 | 52 | a1i | |- ( N e. NN -> ( log ` _e ) = 1 ) |
| 54 | 51 53 | oveq12d | |- ( N e. NN -> ( ( log ` ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) - ( log ` _e ) ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 55 | 16 54 | eqtrd | |- ( N e. NN -> ( log ` ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 56 | 1 | stirlinglem2 | |- ( N e. NN -> ( A ` N ) e. RR+ ) |
| 57 | 56 | relogcld | |- ( N e. NN -> ( log ` ( A ` N ) ) e. RR ) |
| 58 | nfcv | |- F/_ n N |
|
| 59 | nfcv | |- F/_ n log |
|
| 60 | nfmpt1 | |- F/_ n ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) |
|
| 61 | 1 60 | nfcxfr | |- F/_ n A |
| 62 | 61 58 | nffv | |- F/_ n ( A ` N ) |
| 63 | 59 62 | nffv | |- F/_ n ( log ` ( A ` N ) ) |
| 64 | 2fveq3 | |- ( n = N -> ( log ` ( A ` n ) ) = ( log ` ( A ` N ) ) ) |
|
| 65 | 58 63 64 2 | fvmptf | |- ( ( N e. NN /\ ( log ` ( A ` N ) ) e. RR ) -> ( B ` N ) = ( log ` ( A ` N ) ) ) |
| 66 | 57 65 | mpdan | |- ( N e. NN -> ( B ` N ) = ( log ` ( A ` N ) ) ) |
| 67 | nfcv | |- F/_ k ( log ` ( A ` n ) ) |
|
| 68 | nfcv | |- F/_ n k |
|
| 69 | 61 68 | nffv | |- F/_ n ( A ` k ) |
| 70 | 59 69 | nffv | |- F/_ n ( log ` ( A ` k ) ) |
| 71 | 2fveq3 | |- ( n = k -> ( log ` ( A ` n ) ) = ( log ` ( A ` k ) ) ) |
|
| 72 | 67 70 71 | cbvmpt | |- ( n e. NN |-> ( log ` ( A ` n ) ) ) = ( k e. NN |-> ( log ` ( A ` k ) ) ) |
| 73 | 2 72 | eqtri | |- B = ( k e. NN |-> ( log ` ( A ` k ) ) ) |
| 74 | 73 | a1i | |- ( N e. NN -> B = ( k e. NN |-> ( log ` ( A ` k ) ) ) ) |
| 75 | simpr | |- ( ( N e. NN /\ k = ( N + 1 ) ) -> k = ( N + 1 ) ) |
|
| 76 | 75 | fveq2d | |- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( A ` k ) = ( A ` ( N + 1 ) ) ) |
| 77 | 76 | fveq2d | |- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( log ` ( A ` k ) ) = ( log ` ( A ` ( N + 1 ) ) ) ) |
| 78 | 1 | stirlinglem2 | |- ( ( N + 1 ) e. NN -> ( A ` ( N + 1 ) ) e. RR+ ) |
| 79 | 24 78 | syl | |- ( N e. NN -> ( A ` ( N + 1 ) ) e. RR+ ) |
| 80 | 79 | relogcld | |- ( N e. NN -> ( log ` ( A ` ( N + 1 ) ) ) e. RR ) |
| 81 | 74 77 24 80 | fvmptd | |- ( N e. NN -> ( B ` ( N + 1 ) ) = ( log ` ( A ` ( N + 1 ) ) ) ) |
| 82 | 66 81 | oveq12d | |- ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( ( log ` ( A ` N ) ) - ( log ` ( A ` ( N + 1 ) ) ) ) ) |
| 83 | 56 79 | relogdivd | |- ( N e. NN -> ( log ` ( ( A ` N ) / ( A ` ( N + 1 ) ) ) ) = ( ( log ` ( A ` N ) ) - ( log ` ( A ` ( N + 1 ) ) ) ) ) |
| 84 | faccl | |- ( N e. NN0 -> ( ! ` N ) e. NN ) |
|
| 85 | nnrp | |- ( ( ! ` N ) e. NN -> ( ! ` N ) e. RR+ ) |
|
| 86 | 5 84 85 | 3syl | |- ( N e. NN -> ( ! ` N ) e. RR+ ) |
| 87 | 34 8 | rpmulcld | |- ( N e. NN -> ( 2 x. N ) e. RR+ ) |
| 88 | 87 | rpsqrtcld | |- ( N e. NN -> ( sqrt ` ( 2 x. N ) ) e. RR+ ) |
| 89 | 8 15 | rpdivcld | |- ( N e. NN -> ( N / _e ) e. RR+ ) |
| 90 | 89 11 | rpexpcld | |- ( N e. NN -> ( ( N / _e ) ^ N ) e. RR+ ) |
| 91 | 88 90 | rpmulcld | |- ( N e. NN -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) e. RR+ ) |
| 92 | 86 91 | rpdivcld | |- ( N e. NN -> ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) |
| 93 | 1 | a1i | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> A = ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) ) |
| 94 | simpr | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> n = N ) |
|
| 95 | 94 | fveq2d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( ! ` n ) = ( ! ` N ) ) |
| 96 | 94 | oveq2d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( 2 x. n ) = ( 2 x. N ) ) |
| 97 | 96 | fveq2d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. N ) ) ) |
| 98 | 94 | oveq1d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( n / _e ) = ( N / _e ) ) |
| 99 | 98 94 | oveq12d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( ( n / _e ) ^ n ) = ( ( N / _e ) ^ N ) ) |
| 100 | 97 99 | oveq12d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) |
| 101 | 95 100 | oveq12d | |- ( ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) /\ n = N ) -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
| 102 | simpl | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N e. NN ) |
|
| 103 | 86 | rpcnd | |- ( N e. NN -> ( ! ` N ) e. CC ) |
| 104 | 103 | adantr | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ! ` N ) e. CC ) |
| 105 | 2cnd | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> 2 e. CC ) |
|
| 106 | 102 | nncnd | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N e. CC ) |
| 107 | 105 106 | mulcld | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( 2 x. N ) e. CC ) |
| 108 | 107 | sqrtcld | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( sqrt ` ( 2 x. N ) ) e. CC ) |
| 109 | ere | |- _e e. RR |
|
| 110 | 109 | recni | |- _e e. CC |
| 111 | 110 | a1i | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> _e e. CC ) |
| 112 | 0re | |- 0 e. RR |
|
| 113 | epos | |- 0 < _e |
|
| 114 | 112 113 | gtneii | |- _e =/= 0 |
| 115 | 114 | a1i | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> _e =/= 0 ) |
| 116 | 106 111 115 | divcld | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( N / _e ) e. CC ) |
| 117 | 102 | nnnn0d | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N e. NN0 ) |
| 118 | 116 117 | expcld | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( N / _e ) ^ N ) e. CC ) |
| 119 | 108 118 | mulcld | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) e. CC ) |
| 120 | 88 | rpne0d | |- ( N e. NN -> ( sqrt ` ( 2 x. N ) ) =/= 0 ) |
| 121 | 120 | adantr | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( sqrt ` ( 2 x. N ) ) =/= 0 ) |
| 122 | 102 | nnne0d | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N =/= 0 ) |
| 123 | 106 111 122 115 | divne0d | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( N / _e ) =/= 0 ) |
| 124 | 102 | nnzd | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> N e. ZZ ) |
| 125 | 116 123 124 | expne0d | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( N / _e ) ^ N ) =/= 0 ) |
| 126 | 108 118 121 125 | mulne0d | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) =/= 0 ) |
| 127 | 104 119 126 | divcld | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. CC ) |
| 128 | 93 101 102 127 | fvmptd | |- ( ( N e. NN /\ ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) e. RR+ ) -> ( A ` N ) = ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
| 129 | 92 128 | mpdan | |- ( N e. NN -> ( A ` N ) = ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
| 130 | nfcv | |- F/_ k ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) |
|
| 131 | nfcv | |- F/_ n ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) |
|
| 132 | fveq2 | |- ( n = k -> ( ! ` n ) = ( ! ` k ) ) |
|
| 133 | oveq2 | |- ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) |
|
| 134 | 133 | fveq2d | |- ( n = k -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. k ) ) ) |
| 135 | oveq1 | |- ( n = k -> ( n / _e ) = ( k / _e ) ) |
|
| 136 | id | |- ( n = k -> n = k ) |
|
| 137 | 135 136 | oveq12d | |- ( n = k -> ( ( n / _e ) ^ n ) = ( ( k / _e ) ^ k ) ) |
| 138 | 134 137 | oveq12d | |- ( n = k -> ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) = ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) |
| 139 | 132 138 | oveq12d | |- ( n = k -> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) = ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
| 140 | 130 131 139 | cbvmpt | |- ( n e. NN |-> ( ( ! ` n ) / ( ( sqrt ` ( 2 x. n ) ) x. ( ( n / _e ) ^ n ) ) ) ) = ( k e. NN |-> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
| 141 | 1 140 | eqtri | |- A = ( k e. NN |-> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) |
| 142 | 141 | a1i | |- ( N e. NN -> A = ( k e. NN |-> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) ) ) |
| 143 | 75 | fveq2d | |- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( ! ` k ) = ( ! ` ( N + 1 ) ) ) |
| 144 | 75 | oveq2d | |- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( 2 x. k ) = ( 2 x. ( N + 1 ) ) ) |
| 145 | 144 | fveq2d | |- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( sqrt ` ( 2 x. k ) ) = ( sqrt ` ( 2 x. ( N + 1 ) ) ) ) |
| 146 | 75 | oveq1d | |- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( k / _e ) = ( ( N + 1 ) / _e ) ) |
| 147 | 146 75 | oveq12d | |- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( ( k / _e ) ^ k ) = ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) |
| 148 | 145 147 | oveq12d | |- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) = ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) |
| 149 | 143 148 | oveq12d | |- ( ( N e. NN /\ k = ( N + 1 ) ) -> ( ( ! ` k ) / ( ( sqrt ` ( 2 x. k ) ) x. ( ( k / _e ) ^ k ) ) ) = ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) |
| 150 | 24 | nnnn0d | |- ( N e. NN -> ( N + 1 ) e. NN0 ) |
| 151 | faccl | |- ( ( N + 1 ) e. NN0 -> ( ! ` ( N + 1 ) ) e. NN ) |
|
| 152 | nnrp | |- ( ( ! ` ( N + 1 ) ) e. NN -> ( ! ` ( N + 1 ) ) e. RR+ ) |
|
| 153 | 150 151 152 | 3syl | |- ( N e. NN -> ( ! ` ( N + 1 ) ) e. RR+ ) |
| 154 | 34 7 | rpmulcld | |- ( N e. NN -> ( 2 x. ( N + 1 ) ) e. RR+ ) |
| 155 | 154 | rpsqrtcld | |- ( N e. NN -> ( sqrt ` ( 2 x. ( N + 1 ) ) ) e. RR+ ) |
| 156 | 7 15 | rpdivcld | |- ( N e. NN -> ( ( N + 1 ) / _e ) e. RR+ ) |
| 157 | 11 | peano2zd | |- ( N e. NN -> ( N + 1 ) e. ZZ ) |
| 158 | 156 157 | rpexpcld | |- ( N e. NN -> ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) e. RR+ ) |
| 159 | 155 158 | rpmulcld | |- ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) e. RR+ ) |
| 160 | 153 159 | rpdivcld | |- ( N e. NN -> ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) e. RR+ ) |
| 161 | 142 149 24 160 | fvmptd | |- ( N e. NN -> ( A ` ( N + 1 ) ) = ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) |
| 162 | 129 161 | oveq12d | |- ( N e. NN -> ( ( A ` N ) / ( A ` ( N + 1 ) ) ) = ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) |
| 163 | facp1 | |- ( N e. NN0 -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
|
| 164 | 5 163 | syl | |- ( N e. NN -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
| 165 | 164 | oveq1d | |- ( N e. NN -> ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) |
| 166 | 159 | rpcnd | |- ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) e. CC ) |
| 167 | 159 | rpne0d | |- ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) =/= 0 ) |
| 168 | 103 25 166 167 | divassd | |- ( N e. NN -> ( ( ( ! ` N ) x. ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) = ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) |
| 169 | 165 168 | eqtrd | |- ( N e. NN -> ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) = ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) |
| 170 | 169 | oveq2d | |- ( N e. NN -> ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) ) |
| 171 | 91 | rpcnd | |- ( N e. NN -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) e. CC ) |
| 172 | 25 166 167 | divcld | |- ( N e. NN -> ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) e. CC ) |
| 173 | 103 172 | mulcld | |- ( N e. NN -> ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) e. CC ) |
| 174 | 91 | rpne0d | |- ( N e. NN -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) =/= 0 ) |
| 175 | 86 | rpne0d | |- ( N e. NN -> ( ! ` N ) =/= 0 ) |
| 176 | 25 166 29 167 | divne0d | |- ( N e. NN -> ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) =/= 0 ) |
| 177 | 103 172 175 176 | mulne0d | |- ( N e. NN -> ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) =/= 0 ) |
| 178 | 103 171 173 174 177 | divdiv32d | |- ( N e. NN -> ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) = ( ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
| 179 | 103 103 172 175 176 | divdiv1d | |- ( N e. NN -> ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) ) |
| 180 | 179 | eqcomd | |- ( N e. NN -> ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) = ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) |
| 181 | 180 | oveq1d | |- ( N e. NN -> ( ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
| 182 | 103 175 | dividd | |- ( N e. NN -> ( ( ! ` N ) / ( ! ` N ) ) = 1 ) |
| 183 | 182 | oveq1d | |- ( N e. NN -> ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) |
| 184 | 183 | oveq1d | |- ( N e. NN -> ( ( ( ( ! ` N ) / ( ! ` N ) ) / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
| 185 | 25 166 29 167 | recdivd | |- ( N e. NN -> ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) ) |
| 186 | 185 | oveq1d | |- ( N e. NN -> ( ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
| 187 | 166 25 29 | divcld | |- ( N e. NN -> ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) e. CC ) |
| 188 | 88 | rpcnd | |- ( N e. NN -> ( sqrt ` ( 2 x. N ) ) e. CC ) |
| 189 | 90 | rpcnd | |- ( N e. NN -> ( ( N / _e ) ^ N ) e. CC ) |
| 190 | 90 | rpne0d | |- ( N e. NN -> ( ( N / _e ) ^ N ) =/= 0 ) |
| 191 | 187 188 189 120 190 | divdiv1d | |- ( N e. NN -> ( ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( sqrt ` ( 2 x. N ) ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) ) |
| 192 | 166 25 188 29 120 | divdiv32d | |- ( N e. NN -> ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) / ( N + 1 ) ) ) |
| 193 | 155 | rpcnd | |- ( N e. NN -> ( sqrt ` ( 2 x. ( N + 1 ) ) ) e. CC ) |
| 194 | 158 | rpcnd | |- ( N e. NN -> ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) e. CC ) |
| 195 | 193 194 188 120 | div23d | |- ( N e. NN -> ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) |
| 196 | 34 | rpred | |- ( N e. NN -> 2 e. RR ) |
| 197 | 34 | rpge0d | |- ( N e. NN -> 0 <_ 2 ) |
| 198 | 24 | nnred | |- ( N e. NN -> ( N + 1 ) e. RR ) |
| 199 | 150 | nn0ge0d | |- ( N e. NN -> 0 <_ ( N + 1 ) ) |
| 200 | 196 197 198 199 | sqrtmuld | |- ( N e. NN -> ( sqrt ` ( 2 x. ( N + 1 ) ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` ( N + 1 ) ) ) ) |
| 201 | 196 197 4 6 | sqrtmuld | |- ( N e. NN -> ( sqrt ` ( 2 x. N ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` N ) ) ) |
| 202 | 200 201 | oveq12d | |- ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( ( sqrt ` 2 ) x. ( sqrt ` ( N + 1 ) ) ) / ( ( sqrt ` 2 ) x. ( sqrt ` N ) ) ) ) |
| 203 | 32 | sqrtcld | |- ( N e. NN -> ( sqrt ` 2 ) e. CC ) |
| 204 | 25 | sqrtcld | |- ( N e. NN -> ( sqrt ` ( N + 1 ) ) e. CC ) |
| 205 | 26 | sqrtcld | |- ( N e. NN -> ( sqrt ` N ) e. CC ) |
| 206 | 34 | rpsqrtcld | |- ( N e. NN -> ( sqrt ` 2 ) e. RR+ ) |
| 207 | 206 | rpne0d | |- ( N e. NN -> ( sqrt ` 2 ) =/= 0 ) |
| 208 | 8 | rpsqrtcld | |- ( N e. NN -> ( sqrt ` N ) e. RR+ ) |
| 209 | 208 | rpne0d | |- ( N e. NN -> ( sqrt ` N ) =/= 0 ) |
| 210 | 203 203 204 205 207 209 | divmuldivd | |- ( N e. NN -> ( ( ( sqrt ` 2 ) / ( sqrt ` 2 ) ) x. ( ( sqrt ` ( N + 1 ) ) / ( sqrt ` N ) ) ) = ( ( ( sqrt ` 2 ) x. ( sqrt ` ( N + 1 ) ) ) / ( ( sqrt ` 2 ) x. ( sqrt ` N ) ) ) ) |
| 211 | 203 207 | dividd | |- ( N e. NN -> ( ( sqrt ` 2 ) / ( sqrt ` 2 ) ) = 1 ) |
| 212 | 198 199 8 | sqrtdivd | |- ( N e. NN -> ( sqrt ` ( ( N + 1 ) / N ) ) = ( ( sqrt ` ( N + 1 ) ) / ( sqrt ` N ) ) ) |
| 213 | 212 | eqcomd | |- ( N e. NN -> ( ( sqrt ` ( N + 1 ) ) / ( sqrt ` N ) ) = ( sqrt ` ( ( N + 1 ) / N ) ) ) |
| 214 | 211 213 | oveq12d | |- ( N e. NN -> ( ( ( sqrt ` 2 ) / ( sqrt ` 2 ) ) x. ( ( sqrt ` ( N + 1 ) ) / ( sqrt ` N ) ) ) = ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) ) |
| 215 | 202 210 214 | 3eqtr2d | |- ( N e. NN -> ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) ) |
| 216 | 215 | oveq1d | |- ( N e. NN -> ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) = ( ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) |
| 217 | 28 | sqrtcld | |- ( N e. NN -> ( sqrt ` ( ( N + 1 ) / N ) ) e. CC ) |
| 218 | 217 | mullidd | |- ( N e. NN -> ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) = ( sqrt ` ( ( N + 1 ) / N ) ) ) |
| 219 | 218 | oveq1d | |- ( N e. NN -> ( ( 1 x. ( sqrt ` ( ( N + 1 ) / N ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) |
| 220 | 195 216 219 | 3eqtrd | |- ( N e. NN -> ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) |
| 221 | 220 | oveq1d | |- ( N e. NN -> ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( sqrt ` ( 2 x. N ) ) ) / ( N + 1 ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) ) |
| 222 | 192 221 | eqtrd | |- ( N e. NN -> ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( sqrt ` ( 2 x. N ) ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) ) |
| 223 | 222 | oveq1d | |- ( N e. NN -> ( ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( sqrt ` ( 2 x. N ) ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) ) |
| 224 | 191 223 | eqtr3d | |- ( N e. NN -> ( ( ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) ) |
| 225 | 217 194 | mulcld | |- ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) e. CC ) |
| 226 | 225 25 189 29 190 | divdiv32d | |- ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( ( N / _e ) ^ N ) ) / ( N + 1 ) ) ) |
| 227 | 217 194 189 190 | divassd | |- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( ( N / _e ) ^ N ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) ) ) |
| 228 | 15 | rpcnd | |- ( N e. NN -> _e e. CC ) |
| 229 | 15 | rpne0d | |- ( N e. NN -> _e =/= 0 ) |
| 230 | 25 228 229 150 | expdivd | |- ( N e. NN -> ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) = ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) ) |
| 231 | 26 228 229 5 | expdivd | |- ( N e. NN -> ( ( N / _e ) ^ N ) = ( ( N ^ N ) / ( _e ^ N ) ) ) |
| 232 | 230 231 | oveq12d | |- ( N e. NN -> ( ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) ) |
| 233 | 232 | oveq2d | |- ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) ) ) |
| 234 | 25 150 | expcld | |- ( N e. NN -> ( ( N + 1 ) ^ ( N + 1 ) ) e. CC ) |
| 235 | 228 150 | expcld | |- ( N e. NN -> ( _e ^ ( N + 1 ) ) e. CC ) |
| 236 | 26 5 | expcld | |- ( N e. NN -> ( N ^ N ) e. CC ) |
| 237 | 228 5 | expcld | |- ( N e. NN -> ( _e ^ N ) e. CC ) |
| 238 | 228 229 157 | expne0d | |- ( N e. NN -> ( _e ^ ( N + 1 ) ) =/= 0 ) |
| 239 | 228 229 11 | expne0d | |- ( N e. NN -> ( _e ^ N ) =/= 0 ) |
| 240 | 26 27 11 | expne0d | |- ( N e. NN -> ( N ^ N ) =/= 0 ) |
| 241 | 234 235 236 237 238 239 240 | divdivdivd | |- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) x. ( _e ^ N ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) ) |
| 242 | 234 237 | mulcomd | |- ( N e. NN -> ( ( ( N + 1 ) ^ ( N + 1 ) ) x. ( _e ^ N ) ) = ( ( _e ^ N ) x. ( ( N + 1 ) ^ ( N + 1 ) ) ) ) |
| 243 | 242 | oveq1d | |- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) x. ( _e ^ N ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) = ( ( ( _e ^ N ) x. ( ( N + 1 ) ^ ( N + 1 ) ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) ) |
| 244 | 237 235 234 236 238 240 | divmuldivd | |- ( N e. NN -> ( ( ( _e ^ N ) / ( _e ^ ( N + 1 ) ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( ( _e ^ N ) x. ( ( N + 1 ) ^ ( N + 1 ) ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) ) |
| 245 | 228 5 | expp1d | |- ( N e. NN -> ( _e ^ ( N + 1 ) ) = ( ( _e ^ N ) x. _e ) ) |
| 246 | 245 | oveq2d | |- ( N e. NN -> ( ( _e ^ N ) / ( _e ^ ( N + 1 ) ) ) = ( ( _e ^ N ) / ( ( _e ^ N ) x. _e ) ) ) |
| 247 | 237 237 228 239 229 | divdiv1d | |- ( N e. NN -> ( ( ( _e ^ N ) / ( _e ^ N ) ) / _e ) = ( ( _e ^ N ) / ( ( _e ^ N ) x. _e ) ) ) |
| 248 | 237 239 | dividd | |- ( N e. NN -> ( ( _e ^ N ) / ( _e ^ N ) ) = 1 ) |
| 249 | 248 | oveq1d | |- ( N e. NN -> ( ( ( _e ^ N ) / ( _e ^ N ) ) / _e ) = ( 1 / _e ) ) |
| 250 | 246 247 249 | 3eqtr2d | |- ( N e. NN -> ( ( _e ^ N ) / ( _e ^ ( N + 1 ) ) ) = ( 1 / _e ) ) |
| 251 | 250 | oveq1d | |- ( N e. NN -> ( ( ( _e ^ N ) / ( _e ^ ( N + 1 ) ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) |
| 252 | 244 251 | eqtr3d | |- ( N e. NN -> ( ( ( _e ^ N ) x. ( ( N + 1 ) ^ ( N + 1 ) ) ) / ( ( _e ^ ( N + 1 ) ) x. ( N ^ N ) ) ) = ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) |
| 253 | 241 243 252 | 3eqtrd | |- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) = ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) |
| 254 | 253 | oveq2d | |- ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( _e ^ ( N + 1 ) ) ) / ( ( N ^ N ) / ( _e ^ N ) ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) ) |
| 255 | 227 233 254 | 3eqtrd | |- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( ( N / _e ) ^ N ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) ) |
| 256 | 255 | oveq1d | |- ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( ( N / _e ) ^ N ) ) / ( N + 1 ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) / ( N + 1 ) ) ) |
| 257 | 234 236 240 | divcld | |- ( N e. NN -> ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) e. CC ) |
| 258 | 38 228 257 229 | div32d | |- ( N e. NN -> ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( 1 x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) ) |
| 259 | 257 228 229 | divcld | |- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) e. CC ) |
| 260 | 259 | mullidd | |- ( N e. NN -> ( 1 x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) |
| 261 | 258 260 | eqtrd | |- ( N e. NN -> ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) |
| 262 | 261 | oveq2d | |- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) ) |
| 263 | 228 229 | reccld | |- ( N e. NN -> ( 1 / _e ) e. CC ) |
| 264 | 263 257 | mulcld | |- ( N e. NN -> ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) e. CC ) |
| 265 | 217 264 25 29 | div23d | |- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) / ( N + 1 ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) ) |
| 266 | 217 25 29 | divcld | |- ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) e. CC ) |
| 267 | 266 257 228 229 | divassd | |- ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / _e ) ) ) |
| 268 | 262 265 267 | 3eqtr4d | |- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( 1 / _e ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) ) / ( N + 1 ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) |
| 269 | 226 256 268 | 3eqtrd | |- ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) / ( N + 1 ) ) / ( ( N / _e ) ^ N ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) |
| 270 | 186 224 269 | 3eqtrd | |- ( N e. NN -> ( ( 1 / ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) |
| 271 | 181 184 270 | 3eqtrd | |- ( N e. NN -> ( ( ( ! ` N ) / ( ( ! ` N ) x. ( ( N + 1 ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) |
| 272 | 170 178 271 | 3eqtrd | |- ( N e. NN -> ( ( ( ! ` N ) / ( ( sqrt ` ( 2 x. N ) ) x. ( ( N / _e ) ^ N ) ) ) / ( ( ! ` ( N + 1 ) ) / ( ( sqrt ` ( 2 x. ( N + 1 ) ) ) x. ( ( ( N + 1 ) / _e ) ^ ( N + 1 ) ) ) ) ) = ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) ) |
| 273 | 217 25 257 29 | div32d | |- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / ( N + 1 ) ) ) ) |
| 274 | 25 5 | expp1d | |- ( N e. NN -> ( ( N + 1 ) ^ ( N + 1 ) ) = ( ( ( N + 1 ) ^ N ) x. ( N + 1 ) ) ) |
| 275 | 274 | oveq1d | |- ( N e. NN -> ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N + 1 ) ) = ( ( ( ( N + 1 ) ^ N ) x. ( N + 1 ) ) / ( N + 1 ) ) ) |
| 276 | 25 5 | expcld | |- ( N e. NN -> ( ( N + 1 ) ^ N ) e. CC ) |
| 277 | 276 25 29 | divcan4d | |- ( N e. NN -> ( ( ( ( N + 1 ) ^ N ) x. ( N + 1 ) ) / ( N + 1 ) ) = ( ( N + 1 ) ^ N ) ) |
| 278 | 275 277 | eqtrd | |- ( N e. NN -> ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N + 1 ) ) = ( ( N + 1 ) ^ N ) ) |
| 279 | 278 | oveq1d | |- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N + 1 ) ) / ( N ^ N ) ) = ( ( ( N + 1 ) ^ N ) / ( N ^ N ) ) ) |
| 280 | 234 236 25 240 29 | divdiv32d | |- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / ( N + 1 ) ) = ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N + 1 ) ) / ( N ^ N ) ) ) |
| 281 | 25 26 27 5 | expdivd | |- ( N e. NN -> ( ( ( N + 1 ) / N ) ^ N ) = ( ( ( N + 1 ) ^ N ) / ( N ^ N ) ) ) |
| 282 | 279 280 281 | 3eqtr4d | |- ( N e. NN -> ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / ( N + 1 ) ) = ( ( ( N + 1 ) / N ) ^ N ) ) |
| 283 | 282 | oveq2d | |- ( N e. NN -> ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) / ( N + 1 ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) |
| 284 | 273 283 | eqtrd | |- ( N e. NN -> ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) = ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) ) |
| 285 | 284 | oveq1d | |- ( N e. NN -> ( ( ( ( sqrt ` ( ( N + 1 ) / N ) ) / ( N + 1 ) ) x. ( ( ( N + 1 ) ^ ( N + 1 ) ) / ( N ^ N ) ) ) / _e ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) |
| 286 | 162 272 285 | 3eqtrd | |- ( N e. NN -> ( ( A ` N ) / ( A ` ( N + 1 ) ) ) = ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) |
| 287 | 286 | fveq2d | |- ( N e. NN -> ( log ` ( ( A ` N ) / ( A ` ( N + 1 ) ) ) ) = ( log ` ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) ) |
| 288 | 82 83 287 | 3eqtr2d | |- ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( log ` ( ( ( sqrt ` ( ( N + 1 ) / N ) ) x. ( ( ( N + 1 ) / N ) ^ N ) ) / _e ) ) ) |
| 289 | 38 46 | addcld | |- ( N e. NN -> ( 1 + ( 2 x. N ) ) e. CC ) |
| 290 | 289 | halfcld | |- ( N e. NN -> ( ( 1 + ( 2 x. N ) ) / 2 ) e. CC ) |
| 291 | 290 31 | mulcld | |- ( N e. NN -> ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) e. CC ) |
| 292 | 291 38 | subcld | |- ( N e. NN -> ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) |
| 293 | 3 | a1i | |- ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) -> J = ( n e. NN |-> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) ) ) |
| 294 | simpr | |- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> n = N ) |
|
| 295 | 294 | oveq2d | |- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( 2 x. n ) = ( 2 x. N ) ) |
| 296 | 295 | oveq2d | |- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( 1 + ( 2 x. n ) ) = ( 1 + ( 2 x. N ) ) ) |
| 297 | 296 | oveq1d | |- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( ( 1 + ( 2 x. n ) ) / 2 ) = ( ( 1 + ( 2 x. N ) ) / 2 ) ) |
| 298 | 294 | oveq1d | |- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( n + 1 ) = ( N + 1 ) ) |
| 299 | 298 294 | oveq12d | |- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( ( n + 1 ) / n ) = ( ( N + 1 ) / N ) ) |
| 300 | 299 | fveq2d | |- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( log ` ( ( n + 1 ) / n ) ) = ( log ` ( ( N + 1 ) / N ) ) ) |
| 301 | 297 300 | oveq12d | |- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) = ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 302 | 301 | oveq1d | |- ( ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) /\ n = N ) -> ( ( ( ( 1 + ( 2 x. n ) ) / 2 ) x. ( log ` ( ( n + 1 ) / n ) ) ) - 1 ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 303 | simpl | |- ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) -> N e. NN ) |
|
| 304 | simpr | |- ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) -> ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) |
|
| 305 | 293 302 303 304 | fvmptd | |- ( ( N e. NN /\ ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) e. CC ) -> ( J ` N ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 306 | 292 305 | mpdan | |- ( N e. NN -> ( J ` N ) = ( ( ( ( 1 + ( 2 x. N ) ) / 2 ) x. ( log ` ( ( N + 1 ) / N ) ) ) - 1 ) ) |
| 307 | 55 288 306 | 3eqtr4d | |- ( N e. NN -> ( ( B ` N ) - ( B ` ( N + 1 ) ) ) = ( J ` N ) ) |