This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural logarithm of positive A raised to an integer power. Property 4 of Cohen p. 301-302, restricted to natural logarithms and integer powers N . (Contributed by Steve Rodriguez, 25-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relogexp | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( log ` ( A ^ N ) ) = ( N x. ( log ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 2 | 1 | recnd | |- ( A e. RR+ -> ( log ` A ) e. CC ) |
| 3 | efexp | |- ( ( ( log ` A ) e. CC /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) |
|
| 4 | 2 3 | sylan | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) |
| 5 | reeflog | |- ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) |
|
| 6 | 5 | oveq1d | |- ( A e. RR+ -> ( ( exp ` ( log ` A ) ) ^ N ) = ( A ^ N ) ) |
| 7 | 6 | adantr | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( ( exp ` ( log ` A ) ) ^ N ) = ( A ^ N ) ) |
| 8 | 4 7 | eqtrd | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( A ^ N ) ) |
| 9 | 8 | fveq2d | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( log ` ( exp ` ( N x. ( log ` A ) ) ) ) = ( log ` ( A ^ N ) ) ) |
| 10 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 11 | remulcl | |- ( ( N e. RR /\ ( log ` A ) e. RR ) -> ( N x. ( log ` A ) ) e. RR ) |
|
| 12 | 10 1 11 | syl2anr | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( N x. ( log ` A ) ) e. RR ) |
| 13 | relogef | |- ( ( N x. ( log ` A ) ) e. RR -> ( log ` ( exp ` ( N x. ( log ` A ) ) ) ) = ( N x. ( log ` A ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( log ` ( exp ` ( N x. ( log ` A ) ) ) ) = ( N x. ( log ` A ) ) ) |
| 15 | 9 14 | eqtr3d | |- ( ( A e. RR+ /\ N e. ZZ ) -> ( log ` ( A ^ N ) ) = ( N x. ( log ` A ) ) ) |