This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ocnvfvb | |- ( ( F : A -1-1-onto-> B /\ C e. A /\ D e. B ) -> ( ( F ` C ) = D <-> ( `' F ` D ) = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnvfv | |- ( ( F : A -1-1-onto-> B /\ C e. A ) -> ( ( F ` C ) = D -> ( `' F ` D ) = C ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( F : A -1-1-onto-> B /\ C e. A /\ D e. B ) -> ( ( F ` C ) = D -> ( `' F ` D ) = C ) ) |
| 3 | fveq2 | |- ( C = ( `' F ` D ) -> ( F ` C ) = ( F ` ( `' F ` D ) ) ) |
|
| 4 | 3 | eqcoms | |- ( ( `' F ` D ) = C -> ( F ` C ) = ( F ` ( `' F ` D ) ) ) |
| 5 | f1ocnvfv2 | |- ( ( F : A -1-1-onto-> B /\ D e. B ) -> ( F ` ( `' F ` D ) ) = D ) |
|
| 6 | 5 | eqeq2d | |- ( ( F : A -1-1-onto-> B /\ D e. B ) -> ( ( F ` C ) = ( F ` ( `' F ` D ) ) <-> ( F ` C ) = D ) ) |
| 7 | 4 6 | imbitrid | |- ( ( F : A -1-1-onto-> B /\ D e. B ) -> ( ( `' F ` D ) = C -> ( F ` C ) = D ) ) |
| 8 | 7 | 3adant2 | |- ( ( F : A -1-1-onto-> B /\ C e. A /\ D e. B ) -> ( ( `' F ` D ) = C -> ( F ` C ) = D ) ) |
| 9 | 2 8 | impbid | |- ( ( F : A -1-1-onto-> B /\ C e. A /\ D e. B ) -> ( ( F ` C ) = D <-> ( `' F ` D ) = C ) ) |