This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of an integer is greater than or equal to zero. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcge0 | |- ( ( P e. Prime /\ N e. ZZ ) -> 0 <_ ( P pCnt N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lepnf | |- 0 <_ +oo |
|
| 2 | oveq2 | |- ( N = 0 -> ( P pCnt N ) = ( P pCnt 0 ) ) |
|
| 3 | pc0 | |- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
|
| 4 | 3 | adantr | |- ( ( P e. Prime /\ N e. ZZ ) -> ( P pCnt 0 ) = +oo ) |
| 5 | 2 4 | sylan9eqr | |- ( ( ( P e. Prime /\ N e. ZZ ) /\ N = 0 ) -> ( P pCnt N ) = +oo ) |
| 6 | 1 5 | breqtrrid | |- ( ( ( P e. Prime /\ N e. ZZ ) /\ N = 0 ) -> 0 <_ ( P pCnt N ) ) |
| 7 | pczcl | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) e. NN0 ) |
|
| 8 | 7 | nn0ge0d | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> 0 <_ ( P pCnt N ) ) |
| 9 | 8 | anassrs | |- ( ( ( P e. Prime /\ N e. ZZ ) /\ N =/= 0 ) -> 0 <_ ( P pCnt N ) ) |
| 10 | 6 9 | pm2.61dane | |- ( ( P e. Prime /\ N e. ZZ ) -> 0 <_ ( P pCnt N ) ) |