This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elopab | |- ( A e. { <. x , y >. | ph } <-> E. x E. y ( A = <. x , y >. /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( A e. { <. x , y >. | ph } -> A e. _V ) |
|
| 2 | opex | |- <. x , y >. e. _V |
|
| 3 | eleq1 | |- ( A = <. x , y >. -> ( A e. _V <-> <. x , y >. e. _V ) ) |
|
| 4 | 2 3 | mpbiri | |- ( A = <. x , y >. -> A e. _V ) |
| 5 | 4 | adantr | |- ( ( A = <. x , y >. /\ ph ) -> A e. _V ) |
| 6 | 5 | exlimivv | |- ( E. x E. y ( A = <. x , y >. /\ ph ) -> A e. _V ) |
| 7 | elopabw | |- ( A e. _V -> ( A e. { <. x , y >. | ph } <-> E. x E. y ( A = <. x , y >. /\ ph ) ) ) |
|
| 8 | 1 6 7 | pm5.21nii | |- ( A e. { <. x , y >. | ph } <-> E. x E. y ( A = <. x , y >. /\ ph ) ) |