This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation does not contain the empty set. (Contributed by AV, 19-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satf0n0 | |- ( N e. _om -> (/) e/ ( ( (/) Sat (/) ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = (/) -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` (/) ) ) |
|
| 2 | 1 | eleq2d | |- ( x = (/) -> ( (/) e. ( ( (/) Sat (/) ) ` x ) <-> (/) e. ( ( (/) Sat (/) ) ` (/) ) ) ) |
| 3 | 2 | notbid | |- ( x = (/) -> ( -. (/) e. ( ( (/) Sat (/) ) ` x ) <-> -. (/) e. ( ( (/) Sat (/) ) ` (/) ) ) ) |
| 4 | fveq2 | |- ( x = y -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` y ) ) |
|
| 5 | 4 | eleq2d | |- ( x = y -> ( (/) e. ( ( (/) Sat (/) ) ` x ) <-> (/) e. ( ( (/) Sat (/) ) ` y ) ) ) |
| 6 | 5 | notbid | |- ( x = y -> ( -. (/) e. ( ( (/) Sat (/) ) ` x ) <-> -. (/) e. ( ( (/) Sat (/) ) ` y ) ) ) |
| 7 | fveq2 | |- ( x = suc y -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` suc y ) ) |
|
| 8 | 7 | eleq2d | |- ( x = suc y -> ( (/) e. ( ( (/) Sat (/) ) ` x ) <-> (/) e. ( ( (/) Sat (/) ) ` suc y ) ) ) |
| 9 | 8 | notbid | |- ( x = suc y -> ( -. (/) e. ( ( (/) Sat (/) ) ` x ) <-> -. (/) e. ( ( (/) Sat (/) ) ` suc y ) ) ) |
| 10 | fveq2 | |- ( x = N -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` N ) ) |
|
| 11 | 10 | eleq2d | |- ( x = N -> ( (/) e. ( ( (/) Sat (/) ) ` x ) <-> (/) e. ( ( (/) Sat (/) ) ` N ) ) ) |
| 12 | 11 | notbid | |- ( x = N -> ( -. (/) e. ( ( (/) Sat (/) ) ` x ) <-> -. (/) e. ( ( (/) Sat (/) ) ` N ) ) ) |
| 13 | 0nelopab | |- -. (/) e. { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } |
|
| 14 | satf00 | |- ( ( (/) Sat (/) ) ` (/) ) = { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } |
|
| 15 | 14 | eleq2i | |- ( (/) e. ( ( (/) Sat (/) ) ` (/) ) <-> (/) e. { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) |
| 16 | 13 15 | mtbir | |- -. (/) e. ( ( (/) Sat (/) ) ` (/) ) |
| 17 | simpr | |- ( ( y e. _om /\ -. (/) e. ( ( (/) Sat (/) ) ` y ) ) -> -. (/) e. ( ( (/) Sat (/) ) ` y ) ) |
|
| 18 | 0nelopab | |- -. (/) e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } |
|
| 19 | ioran | |- ( -. ( (/) e. ( ( (/) Sat (/) ) ` y ) \/ (/) e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) <-> ( -. (/) e. ( ( (/) Sat (/) ) ` y ) /\ -. (/) e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
|
| 20 | 17 18 19 | sylanblrc | |- ( ( y e. _om /\ -. (/) e. ( ( (/) Sat (/) ) ` y ) ) -> -. ( (/) e. ( ( (/) Sat (/) ) ` y ) \/ (/) e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 21 | eqid | |- ( (/) Sat (/) ) = ( (/) Sat (/) ) |
|
| 22 | 21 | satf0suc | |- ( y e. _om -> ( ( (/) Sat (/) ) ` suc y ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 23 | 22 | adantr | |- ( ( y e. _om /\ -. (/) e. ( ( (/) Sat (/) ) ` y ) ) -> ( ( (/) Sat (/) ) ` suc y ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 24 | 23 | eleq2d | |- ( ( y e. _om /\ -. (/) e. ( ( (/) Sat (/) ) ` y ) ) -> ( (/) e. ( ( (/) Sat (/) ) ` suc y ) <-> (/) e. ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 25 | elun | |- ( (/) e. ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) <-> ( (/) e. ( ( (/) Sat (/) ) ` y ) \/ (/) e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
|
| 26 | 24 25 | bitrdi | |- ( ( y e. _om /\ -. (/) e. ( ( (/) Sat (/) ) ` y ) ) -> ( (/) e. ( ( (/) Sat (/) ) ` suc y ) <-> ( (/) e. ( ( (/) Sat (/) ) ` y ) \/ (/) e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 27 | 20 26 | mtbird | |- ( ( y e. _om /\ -. (/) e. ( ( (/) Sat (/) ) ` y ) ) -> -. (/) e. ( ( (/) Sat (/) ) ` suc y ) ) |
| 28 | 27 | ex | |- ( y e. _om -> ( -. (/) e. ( ( (/) Sat (/) ) ` y ) -> -. (/) e. ( ( (/) Sat (/) ) ` suc y ) ) ) |
| 29 | 3 6 9 12 16 28 | finds | |- ( N e. _om -> -. (/) e. ( ( (/) Sat (/) ) ` N ) ) |
| 30 | df-nel | |- ( (/) e/ ( ( (/) Sat (/) ) ` N ) <-> -. (/) e. ( ( (/) Sat (/) ) ` N ) ) |
|
| 31 | 29 30 | sylibr | |- ( N e. _om -> (/) e/ ( ( (/) Sat (/) ) ` N ) ) |