This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation at a successor. (Contributed by AV, 19-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | satf0suc.s | |- S = ( (/) Sat (/) ) |
|
| Assertion | satf0suc | |- ( N e. _om -> ( S ` suc N ) = ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satf0suc.s | |- S = ( (/) Sat (/) ) |
|
| 2 | 1 | fveq1i | |- ( S ` suc N ) = ( ( (/) Sat (/) ) ` suc N ) |
| 3 | 2 | a1i | |- ( N e. _om -> ( S ` suc N ) = ( ( (/) Sat (/) ) ` suc N ) ) |
| 4 | omsucelsucb | |- ( N e. _om <-> suc N e. suc _om ) |
|
| 5 | satf0sucom | |- ( suc N e. suc _om -> ( ( (/) Sat (/) ) ` suc N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) ) |
|
| 6 | 4 5 | sylbi | |- ( N e. _om -> ( ( (/) Sat (/) ) ` suc N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) ) |
| 7 | nnon | |- ( N e. _om -> N e. On ) |
|
| 8 | rdgsuc | |- ( N e. On -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) ) |
|
| 9 | 7 8 | syl | |- ( N e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) ) |
| 10 | elelsuc | |- ( N e. _om -> N e. suc _om ) |
|
| 11 | satf0sucom | |- ( N e. suc _om -> ( ( (/) Sat (/) ) ` N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) |
|
| 12 | 10 11 | syl | |- ( N e. _om -> ( ( (/) Sat (/) ) ` N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) |
| 13 | 1 | eqcomi | |- ( (/) Sat (/) ) = S |
| 14 | 13 | fveq1i | |- ( ( (/) Sat (/) ) ` N ) = ( S ` N ) |
| 15 | 12 14 | eqtr3di | |- ( N e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) = ( S ` N ) ) |
| 16 | 15 | fveq2d | |- ( N e. _om -> ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( S ` N ) ) ) |
| 17 | eqidd | |- ( N e. _om -> ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) = ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
|
| 18 | id | |- ( f = ( S ` N ) -> f = ( S ` N ) ) |
|
| 19 | rexeq | |- ( f = ( S ` N ) -> ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
|
| 20 | 19 | orbi1d | |- ( f = ( S ` N ) -> ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 21 | 20 | rexeqbi1dv | |- ( f = ( S ` N ) -> ( E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 22 | 21 | anbi2d | |- ( f = ( S ` N ) -> ( ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 23 | 22 | opabbidv | |- ( f = ( S ` N ) -> { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) |
| 24 | 18 23 | uneq12d | |- ( f = ( S ` N ) -> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 25 | 24 | adantl | |- ( ( N e. _om /\ f = ( S ` N ) ) -> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 26 | fvex | |- ( S ` N ) e. _V |
|
| 27 | 26 | a1i | |- ( N e. _om -> ( S ` N ) e. _V ) |
| 28 | omex | |- _om e. _V |
|
| 29 | satf0suclem | |- ( ( ( S ` N ) e. _V /\ ( S ` N ) e. _V /\ _om e. _V ) -> { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) |
|
| 30 | 26 26 28 29 | mp3an | |- { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V |
| 31 | 26 30 | unex | |- ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) e. _V |
| 32 | 31 | a1i | |- ( N e. _om -> ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) e. _V ) |
| 33 | 17 25 27 32 | fvmptd | |- ( N e. _om -> ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( S ` N ) ) = ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 34 | 9 16 33 | 3eqtrd | |- ( N e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) = ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 35 | 3 6 34 | 3eqtrd | |- ( N e. _om -> ( S ` suc N ) = ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |