This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 19.43 of Margaris p. 90. (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 27-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.43 | |- ( E. x ( ph \/ ps ) <-> ( E. x ph \/ E. x ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or | |- ( ( ph \/ ps ) <-> ( -. ph -> ps ) ) |
|
| 2 | 1 | exbii | |- ( E. x ( ph \/ ps ) <-> E. x ( -. ph -> ps ) ) |
| 3 | 19.35 | |- ( E. x ( -. ph -> ps ) <-> ( A. x -. ph -> E. x ps ) ) |
|
| 4 | alnex | |- ( A. x -. ph <-> -. E. x ph ) |
|
| 5 | 4 | imbi1i | |- ( ( A. x -. ph -> E. x ps ) <-> ( -. E. x ph -> E. x ps ) ) |
| 6 | 2 3 5 | 3bitri | |- ( E. x ( ph \/ ps ) <-> ( -. E. x ph -> E. x ps ) ) |
| 7 | df-or | |- ( ( E. x ph \/ E. x ps ) <-> ( -. E. x ph -> E. x ps ) ) |
|
| 8 | 6 7 | bitr4i | |- ( E. x ( ph \/ ps ) <-> ( E. x ph \/ E. x ps ) ) |