This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at (/) . (Contributed by AV, 14-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satf00 | |- ( ( (/) Sat (/) ) ` (/) ) = { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 | |- (/) e. _om |
|
| 2 | elelsuc | |- ( (/) e. _om -> (/) e. suc _om ) |
|
| 3 | satf0sucom | |- ( (/) e. suc _om -> ( ( (/) Sat (/) ) ` (/) ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` (/) ) ) |
|
| 4 | 1 2 3 | mp2b | |- ( ( (/) Sat (/) ) ` (/) ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` (/) ) |
| 5 | omex | |- _om e. _V |
|
| 6 | 5 5 | xpex | |- ( _om X. _om ) e. _V |
| 7 | xpexg | |- ( ( _om e. _V /\ ( _om X. _om ) e. _V ) -> ( _om X. ( _om X. _om ) ) e. _V ) |
|
| 8 | simpl | |- ( ( _om e. _V /\ ( _om X. _om ) e. _V ) -> _om e. _V ) |
|
| 9 | goelel3xp | |- ( ( i e. _om /\ j e. _om ) -> ( i e.g j ) e. ( _om X. ( _om X. _om ) ) ) |
|
| 10 | eleq1 | |- ( x = ( i e.g j ) -> ( x e. ( _om X. ( _om X. _om ) ) <-> ( i e.g j ) e. ( _om X. ( _om X. _om ) ) ) ) |
|
| 11 | 9 10 | syl5ibrcom | |- ( ( i e. _om /\ j e. _om ) -> ( x = ( i e.g j ) -> x e. ( _om X. ( _om X. _om ) ) ) ) |
| 12 | 11 | rexlimivv | |- ( E. i e. _om E. j e. _om x = ( i e.g j ) -> x e. ( _om X. ( _om X. _om ) ) ) |
| 13 | 12 | ad2antll | |- ( ( ( _om e. _V /\ ( _om X. _om ) e. _V ) /\ ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) -> x e. ( _om X. ( _om X. _om ) ) ) |
| 14 | eleq1 | |- ( y = (/) -> ( y e. _om <-> (/) e. _om ) ) |
|
| 15 | 1 14 | mpbiri | |- ( y = (/) -> y e. _om ) |
| 16 | 15 | ad2antrl | |- ( ( ( _om e. _V /\ ( _om X. _om ) e. _V ) /\ ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) -> y e. _om ) |
| 17 | 7 8 13 16 | opabex2 | |- ( ( _om e. _V /\ ( _om X. _om ) e. _V ) -> { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } e. _V ) |
| 18 | 5 6 17 | mp2an | |- { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } e. _V |
| 19 | 18 | rdg0 | |- ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` (/) ) = { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } |
| 20 | 4 19 | eqtri | |- ( ( (/) Sat (/) ) ` (/) ) = { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } |