This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first component of an element of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation is a member of a doubled Cartesian product. (Contributed by AV, 17-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sat1el2xp | |- ( N e. _om -> A. w e. ( ( (/) Sat (/) ) ` N ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = (/) -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` (/) ) ) |
|
| 2 | 1 | raleqdv | |- ( x = (/) -> ( A. w e. ( ( (/) Sat (/) ) ` x ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> A. w e. ( ( (/) Sat (/) ) ` (/) ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 3 | fveq2 | |- ( x = y -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` y ) ) |
|
| 4 | 3 | raleqdv | |- ( x = y -> ( A. w e. ( ( (/) Sat (/) ) ` x ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 5 | fveq2 | |- ( x = suc y -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` suc y ) ) |
|
| 6 | 5 | raleqdv | |- ( x = suc y -> ( A. w e. ( ( (/) Sat (/) ) ` x ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> A. w e. ( ( (/) Sat (/) ) ` suc y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 7 | fveq2 | |- ( x = N -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` N ) ) |
|
| 8 | 7 | raleqdv | |- ( x = N -> ( A. w e. ( ( (/) Sat (/) ) ` x ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> A. w e. ( ( (/) Sat (/) ) ` N ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 9 | eqeq1 | |- ( x = ( 1st ` w ) -> ( x = ( i e.g j ) <-> ( 1st ` w ) = ( i e.g j ) ) ) |
|
| 10 | 9 | 2rexbidv | |- ( x = ( 1st ` w ) -> ( E. i e. _om E. j e. _om x = ( i e.g j ) <-> E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) ) ) |
| 11 | 10 | anbi2d | |- ( x = ( 1st ` w ) -> ( ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) <-> ( z = (/) /\ E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) ) ) ) |
| 12 | eqeq1 | |- ( z = ( 2nd ` w ) -> ( z = (/) <-> ( 2nd ` w ) = (/) ) ) |
|
| 13 | 12 | anbi1d | |- ( z = ( 2nd ` w ) -> ( ( z = (/) /\ E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) ) <-> ( ( 2nd ` w ) = (/) /\ E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) ) ) ) |
| 14 | 11 13 | elopabi | |- ( w e. { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } -> ( ( 2nd ` w ) = (/) /\ E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) ) ) |
| 15 | goel | |- ( ( i e. _om /\ j e. _om ) -> ( i e.g j ) = <. (/) , <. i , j >. >. ) |
|
| 16 | 15 | eqeq2d | |- ( ( i e. _om /\ j e. _om ) -> ( ( 1st ` w ) = ( i e.g j ) <-> ( 1st ` w ) = <. (/) , <. i , j >. >. ) ) |
| 17 | omex | |- _om e. _V |
|
| 18 | 17 17 | pm3.2i | |- ( _om e. _V /\ _om e. _V ) |
| 19 | peano1 | |- (/) e. _om |
|
| 20 | 19 | a1i | |- ( ( i e. _om /\ j e. _om ) -> (/) e. _om ) |
| 21 | opelxpi | |- ( ( i e. _om /\ j e. _om ) -> <. i , j >. e. ( _om X. _om ) ) |
|
| 22 | 20 21 | opelxpd | |- ( ( i e. _om /\ j e. _om ) -> <. (/) , <. i , j >. >. e. ( _om X. ( _om X. _om ) ) ) |
| 23 | xpeq12 | |- ( ( a = _om /\ b = _om ) -> ( a X. b ) = ( _om X. _om ) ) |
|
| 24 | 23 | xpeq2d | |- ( ( a = _om /\ b = _om ) -> ( _om X. ( a X. b ) ) = ( _om X. ( _om X. _om ) ) ) |
| 25 | 24 | eleq2d | |- ( ( a = _om /\ b = _om ) -> ( <. (/) , <. i , j >. >. e. ( _om X. ( a X. b ) ) <-> <. (/) , <. i , j >. >. e. ( _om X. ( _om X. _om ) ) ) ) |
| 26 | 25 | spc2egv | |- ( ( _om e. _V /\ _om e. _V ) -> ( <. (/) , <. i , j >. >. e. ( _om X. ( _om X. _om ) ) -> E. a E. b <. (/) , <. i , j >. >. e. ( _om X. ( a X. b ) ) ) ) |
| 27 | 18 22 26 | mpsyl | |- ( ( i e. _om /\ j e. _om ) -> E. a E. b <. (/) , <. i , j >. >. e. ( _om X. ( a X. b ) ) ) |
| 28 | eleq1 | |- ( ( 1st ` w ) = <. (/) , <. i , j >. >. -> ( ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> <. (/) , <. i , j >. >. e. ( _om X. ( a X. b ) ) ) ) |
|
| 29 | 28 | 2exbidv | |- ( ( 1st ` w ) = <. (/) , <. i , j >. >. -> ( E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> E. a E. b <. (/) , <. i , j >. >. e. ( _om X. ( a X. b ) ) ) ) |
| 30 | 27 29 | syl5ibrcom | |- ( ( i e. _om /\ j e. _om ) -> ( ( 1st ` w ) = <. (/) , <. i , j >. >. -> E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 31 | 16 30 | sylbid | |- ( ( i e. _om /\ j e. _om ) -> ( ( 1st ` w ) = ( i e.g j ) -> E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 32 | 31 | rexlimivv | |- ( E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) -> E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) |
| 33 | 32 | adantl | |- ( ( ( 2nd ` w ) = (/) /\ E. i e. _om E. j e. _om ( 1st ` w ) = ( i e.g j ) ) -> E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) |
| 34 | 14 33 | syl | |- ( w e. { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } -> E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) |
| 35 | satf00 | |- ( ( (/) Sat (/) ) ` (/) ) = { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } |
|
| 36 | 34 35 | eleq2s | |- ( w e. ( ( (/) Sat (/) ) ` (/) ) -> E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) |
| 37 | 36 | rgen | |- A. w e. ( ( (/) Sat (/) ) ` (/) ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) |
| 38 | omsucelsucb | |- ( y e. _om <-> suc y e. suc _om ) |
|
| 39 | satf0sucom | |- ( suc y e. suc _om -> ( ( (/) Sat (/) ) ` suc y ) = ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) ) |
|
| 40 | 38 39 | sylbi | |- ( y e. _om -> ( ( (/) Sat (/) ) ` suc y ) = ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) ) |
| 41 | 40 | adantr | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( (/) Sat (/) ) ` suc y ) = ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) ) |
| 42 | nnon | |- ( y e. _om -> y e. On ) |
|
| 43 | rdgsuc | |- ( y e. On -> ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) = ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) ) |
|
| 44 | 42 43 | syl | |- ( y e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) = ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) ) |
| 45 | 44 | adantr | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) = ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) ) |
| 46 | elelsuc | |- ( y e. _om -> y e. suc _om ) |
|
| 47 | satf0sucom | |- ( y e. suc _om -> ( ( (/) Sat (/) ) ` y ) = ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) |
|
| 48 | 46 47 | syl | |- ( y e. _om -> ( ( (/) Sat (/) ) ` y ) = ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) |
| 49 | 48 | eqcomd | |- ( y e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) = ( ( (/) Sat (/) ) ` y ) ) |
| 50 | 49 | fveq2d | |- ( y e. _om -> ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) = ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( ( (/) Sat (/) ) ` y ) ) ) |
| 51 | 50 | adantr | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` y ) ) = ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( ( (/) Sat (/) ) ` y ) ) ) |
| 52 | eqidd | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) = ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
|
| 53 | id | |- ( f = ( ( (/) Sat (/) ) ` y ) -> f = ( ( (/) Sat (/) ) ` y ) ) |
|
| 54 | rexeq | |- ( f = ( ( (/) Sat (/) ) ` y ) -> ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
|
| 55 | 54 | orbi1d | |- ( f = ( ( (/) Sat (/) ) ` y ) -> ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 56 | 55 | rexeqbi1dv | |- ( f = ( ( (/) Sat (/) ) ` y ) -> ( E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 57 | 56 | anbi2d | |- ( f = ( ( (/) Sat (/) ) ` y ) -> ( ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 58 | 57 | opabbidv | |- ( f = ( ( (/) Sat (/) ) ` y ) -> { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) |
| 59 | 53 58 | uneq12d | |- ( f = ( ( (/) Sat (/) ) ` y ) -> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 60 | 59 | adantl | |- ( ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) /\ f = ( ( (/) Sat (/) ) ` y ) ) -> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 61 | fvexd | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( (/) Sat (/) ) ` y ) e. _V ) |
|
| 62 | 17 | a1i | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> _om e. _V ) |
| 63 | satf0suclem | |- ( ( ( ( (/) Sat (/) ) ` y ) e. _V /\ ( ( (/) Sat (/) ) ` y ) e. _V /\ _om e. _V ) -> { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) |
|
| 64 | 61 61 62 63 | syl3anc | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) |
| 65 | unexg | |- ( ( ( ( (/) Sat (/) ) ` y ) e. _V /\ { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) -> ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) e. _V ) |
|
| 66 | 61 64 65 | syl2anc | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) e. _V ) |
| 67 | 52 60 61 66 | fvmptd | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( ( (/) Sat (/) ) ` y ) ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 68 | 45 51 67 | 3eqtrd | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( rec ( ( f e. _V |-> ( f u. { <. x , z >. | ( z = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , z >. | ( z = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc y ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 69 | 41 68 | eqtrd | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( (/) Sat (/) ) ` suc y ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 70 | 69 | eleq2d | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( t e. ( ( (/) Sat (/) ) ` suc y ) <-> t e. ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 71 | elun | |- ( t e. ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) <-> ( t e. ( ( (/) Sat (/) ) ` y ) \/ t e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
|
| 72 | 70 71 | bitrdi | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( t e. ( ( (/) Sat (/) ) ` suc y ) <-> ( t e. ( ( (/) Sat (/) ) ` y ) \/ t e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 73 | fveq2 | |- ( w = t -> ( 1st ` w ) = ( 1st ` t ) ) |
|
| 74 | 73 | eleq1d | |- ( w = t -> ( ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 75 | 74 | 2exbidv | |- ( w = t -> ( E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 76 | 75 | rspccv | |- ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( t e. ( ( (/) Sat (/) ) ` y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 77 | 76 | adantl | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( t e. ( ( (/) Sat (/) ) ` y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 78 | fveq2 | |- ( w = v -> ( 1st ` w ) = ( 1st ` v ) ) |
|
| 79 | 78 | eleq1d | |- ( w = v -> ( ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> ( 1st ` v ) e. ( _om X. ( a X. b ) ) ) ) |
| 80 | 79 | 2exbidv | |- ( w = v -> ( E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> E. a E. b ( 1st ` v ) e. ( _om X. ( a X. b ) ) ) ) |
| 81 | 80 | rspcva | |- ( ( v e. ( ( (/) Sat (/) ) ` y ) /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` v ) e. ( _om X. ( a X. b ) ) ) |
| 82 | sels | |- ( ( 1st ` v ) e. ( _om X. ( a X. b ) ) -> E. s ( 1st ` v ) e. s ) |
|
| 83 | 82 | exlimivv | |- ( E. a E. b ( 1st ` v ) e. ( _om X. ( a X. b ) ) -> E. s ( 1st ` v ) e. s ) |
| 84 | 81 83 | syl | |- ( ( v e. ( ( (/) Sat (/) ) ` y ) /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. s ( 1st ` v ) e. s ) |
| 85 | 84 | expcom | |- ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( v e. ( ( (/) Sat (/) ) ` y ) -> E. s ( 1st ` v ) e. s ) ) |
| 86 | fveq2 | |- ( w = u -> ( 1st ` w ) = ( 1st ` u ) ) |
|
| 87 | 86 | eleq1d | |- ( w = u -> ( ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> ( 1st ` u ) e. ( _om X. ( a X. b ) ) ) ) |
| 88 | 87 | 2exbidv | |- ( w = u -> ( E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> E. a E. b ( 1st ` u ) e. ( _om X. ( a X. b ) ) ) ) |
| 89 | 88 | rspcva | |- ( ( u e. ( ( (/) Sat (/) ) ` y ) /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` u ) e. ( _om X. ( a X. b ) ) ) |
| 90 | sels | |- ( ( 1st ` u ) e. ( _om X. ( a X. b ) ) -> E. s ( 1st ` u ) e. s ) |
|
| 91 | 90 | exlimivv | |- ( E. a E. b ( 1st ` u ) e. ( _om X. ( a X. b ) ) -> E. s ( 1st ` u ) e. s ) |
| 92 | 89 91 | syl | |- ( ( u e. ( ( (/) Sat (/) ) ` y ) /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. s ( 1st ` u ) e. s ) |
| 93 | eleq2w | |- ( s = r -> ( ( 1st ` u ) e. s <-> ( 1st ` u ) e. r ) ) |
|
| 94 | 93 | cbvexvw | |- ( E. s ( 1st ` u ) e. s <-> E. r ( 1st ` u ) e. r ) |
| 95 | vex | |- r e. _V |
|
| 96 | vex | |- s e. _V |
|
| 97 | 95 96 | pm3.2i | |- ( r e. _V /\ s e. _V ) |
| 98 | df-ov | |- ( ( 1st ` u ) |g ( 1st ` v ) ) = ( |g ` <. ( 1st ` u ) , ( 1st ` v ) >. ) |
|
| 99 | df-gona | |- |g = ( e e. ( _V X. _V ) |-> <. 1o , e >. ) |
|
| 100 | opeq2 | |- ( e = <. ( 1st ` u ) , ( 1st ` v ) >. -> <. 1o , e >. = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) |
|
| 101 | opelvvg | |- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> <. ( 1st ` u ) , ( 1st ` v ) >. e. ( _V X. _V ) ) |
|
| 102 | opex | |- <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. e. _V |
|
| 103 | 102 | a1i | |- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. e. _V ) |
| 104 | 99 100 101 103 | fvmptd3 | |- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> ( |g ` <. ( 1st ` u ) , ( 1st ` v ) >. ) = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) |
| 105 | 98 104 | eqtrid | |- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) = <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. ) |
| 106 | 1onn | |- 1o e. _om |
|
| 107 | 106 | a1i | |- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> 1o e. _om ) |
| 108 | opelxpi | |- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> <. ( 1st ` u ) , ( 1st ` v ) >. e. ( r X. s ) ) |
|
| 109 | 107 108 | opelxpd | |- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> <. 1o , <. ( 1st ` u ) , ( 1st ` v ) >. >. e. ( _om X. ( r X. s ) ) ) |
| 110 | 105 109 | eqeltrd | |- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( r X. s ) ) ) |
| 111 | xpeq12 | |- ( ( a = r /\ b = s ) -> ( a X. b ) = ( r X. s ) ) |
|
| 112 | 111 | xpeq2d | |- ( ( a = r /\ b = s ) -> ( _om X. ( a X. b ) ) = ( _om X. ( r X. s ) ) ) |
| 113 | 112 | eleq2d | |- ( ( a = r /\ b = s ) -> ( ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( a X. b ) ) <-> ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( r X. s ) ) ) ) |
| 114 | 113 | spc2egv | |- ( ( r e. _V /\ s e. _V ) -> ( ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( r X. s ) ) -> E. a E. b ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( a X. b ) ) ) ) |
| 115 | 97 110 114 | mpsyl | |- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> E. a E. b ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( a X. b ) ) ) |
| 116 | eleq1 | |- ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( ( 1st ` t ) e. ( _om X. ( a X. b ) ) <-> ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( a X. b ) ) ) ) |
|
| 117 | 116 | 2exbidv | |- ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) <-> E. a E. b ( ( 1st ` u ) |g ( 1st ` v ) ) e. ( _om X. ( a X. b ) ) ) ) |
| 118 | 115 117 | syl5ibrcom | |- ( ( ( 1st ` u ) e. r /\ ( 1st ` v ) e. s ) -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 119 | 118 | ex | |- ( ( 1st ` u ) e. r -> ( ( 1st ` v ) e. s -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 120 | 119 | exlimdv | |- ( ( 1st ` u ) e. r -> ( E. s ( 1st ` v ) e. s -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 121 | 120 | com23 | |- ( ( 1st ` u ) e. r -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( E. s ( 1st ` v ) e. s -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 122 | 121 | exlimiv | |- ( E. r ( 1st ` u ) e. r -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( E. s ( 1st ` v ) e. s -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 123 | 94 122 | sylbi | |- ( E. s ( 1st ` u ) e. s -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( E. s ( 1st ` v ) e. s -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 124 | 92 123 | syl | |- ( ( u e. ( ( (/) Sat (/) ) ` y ) /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( E. s ( 1st ` v ) e. s -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 125 | 124 | expcom | |- ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( u e. ( ( (/) Sat (/) ) ` y ) -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( E. s ( 1st ` v ) e. s -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 126 | 125 | com24 | |- ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( E. s ( 1st ` v ) e. s -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( u e. ( ( (/) Sat (/) ) ` y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 127 | 85 126 | syld | |- ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( v e. ( ( (/) Sat (/) ) ` y ) -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( u e. ( ( (/) Sat (/) ) ` y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 128 | 127 | adantl | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( v e. ( ( (/) Sat (/) ) ` y ) -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( u e. ( ( (/) Sat (/) ) ` y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 129 | 128 | com14 | |- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( v e. ( ( (/) Sat (/) ) ` y ) -> ( ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 130 | 129 | rexlimdv | |- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 131 | 17 96 | pm3.2i | |- ( _om e. _V /\ s e. _V ) |
| 132 | df-goal | |- A.g i ( 1st ` u ) = <. 2o , <. i , ( 1st ` u ) >. >. |
|
| 133 | 2onn | |- 2o e. _om |
|
| 134 | 133 | a1i | |- ( ( ( 1st ` u ) e. s /\ i e. _om ) -> 2o e. _om ) |
| 135 | opelxpi | |- ( ( i e. _om /\ ( 1st ` u ) e. s ) -> <. i , ( 1st ` u ) >. e. ( _om X. s ) ) |
|
| 136 | 135 | ancoms | |- ( ( ( 1st ` u ) e. s /\ i e. _om ) -> <. i , ( 1st ` u ) >. e. ( _om X. s ) ) |
| 137 | 134 136 | opelxpd | |- ( ( ( 1st ` u ) e. s /\ i e. _om ) -> <. 2o , <. i , ( 1st ` u ) >. >. e. ( _om X. ( _om X. s ) ) ) |
| 138 | 132 137 | eqeltrid | |- ( ( ( 1st ` u ) e. s /\ i e. _om ) -> A.g i ( 1st ` u ) e. ( _om X. ( _om X. s ) ) ) |
| 139 | 138 | 3adant3 | |- ( ( ( 1st ` u ) e. s /\ i e. _om /\ ( 1st ` t ) = A.g i ( 1st ` u ) ) -> A.g i ( 1st ` u ) e. ( _om X. ( _om X. s ) ) ) |
| 140 | eleq1 | |- ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( ( 1st ` t ) e. ( _om X. ( _om X. s ) ) <-> A.g i ( 1st ` u ) e. ( _om X. ( _om X. s ) ) ) ) |
|
| 141 | 140 | 3ad2ant3 | |- ( ( ( 1st ` u ) e. s /\ i e. _om /\ ( 1st ` t ) = A.g i ( 1st ` u ) ) -> ( ( 1st ` t ) e. ( _om X. ( _om X. s ) ) <-> A.g i ( 1st ` u ) e. ( _om X. ( _om X. s ) ) ) ) |
| 142 | 139 141 | mpbird | |- ( ( ( 1st ` u ) e. s /\ i e. _om /\ ( 1st ` t ) = A.g i ( 1st ` u ) ) -> ( 1st ` t ) e. ( _om X. ( _om X. s ) ) ) |
| 143 | xpeq12 | |- ( ( a = _om /\ b = s ) -> ( a X. b ) = ( _om X. s ) ) |
|
| 144 | 143 | xpeq2d | |- ( ( a = _om /\ b = s ) -> ( _om X. ( a X. b ) ) = ( _om X. ( _om X. s ) ) ) |
| 145 | 144 | eleq2d | |- ( ( a = _om /\ b = s ) -> ( ( 1st ` t ) e. ( _om X. ( a X. b ) ) <-> ( 1st ` t ) e. ( _om X. ( _om X. s ) ) ) ) |
| 146 | 145 | spc2egv | |- ( ( _om e. _V /\ s e. _V ) -> ( ( 1st ` t ) e. ( _om X. ( _om X. s ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 147 | 131 142 146 | mpsyl | |- ( ( ( 1st ` u ) e. s /\ i e. _om /\ ( 1st ` t ) = A.g i ( 1st ` u ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) |
| 148 | 147 | 3exp | |- ( ( 1st ` u ) e. s -> ( i e. _om -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 149 | 148 | com23 | |- ( ( 1st ` u ) e. s -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( i e. _om -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 150 | 149 | a1d | |- ( ( 1st ` u ) e. s -> ( y e. _om -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( i e. _om -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 151 | 150 | exlimiv | |- ( E. s ( 1st ` u ) e. s -> ( y e. _om -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( i e. _om -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 152 | 92 151 | syl | |- ( ( u e. ( ( (/) Sat (/) ) ` y ) /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( y e. _om -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( i e. _om -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 153 | 152 | ex | |- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( y e. _om -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( i e. _om -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) ) |
| 154 | 153 | impcomd | |- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( i e. _om -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 155 | 154 | com24 | |- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( i e. _om -> ( ( 1st ` t ) = A.g i ( 1st ` u ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) ) |
| 156 | 155 | rexlimdv | |- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 157 | 130 156 | jaod | |- ( u e. ( ( (/) Sat (/) ) ` y ) -> ( ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 158 | 157 | rexlimiv | |- ( E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 159 | 158 | adantl | |- ( ( ( 2nd ` t ) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) -> ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 160 | eqeq1 | |- ( x = ( 1st ` t ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
|
| 161 | 160 | rexbidv | |- ( x = ( 1st ` t ) -> ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 162 | eqeq1 | |- ( x = ( 1st ` t ) -> ( x = A.g i ( 1st ` u ) <-> ( 1st ` t ) = A.g i ( 1st ` u ) ) ) |
|
| 163 | 162 | rexbidv | |- ( x = ( 1st ` t ) -> ( E. i e. _om x = A.g i ( 1st ` u ) <-> E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) |
| 164 | 161 163 | orbi12d | |- ( x = ( 1st ` t ) -> ( ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) ) |
| 165 | 164 | rexbidv | |- ( x = ( 1st ` t ) -> ( E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) ) |
| 166 | 165 | anbi2d | |- ( x = ( 1st ` t ) -> ( ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) ) ) |
| 167 | eqeq1 | |- ( z = ( 2nd ` t ) -> ( z = (/) <-> ( 2nd ` t ) = (/) ) ) |
|
| 168 | 167 | anbi1d | |- ( z = ( 2nd ` t ) -> ( ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) <-> ( ( 2nd ` t ) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) ) ) |
| 169 | 166 168 | elopabi | |- ( t e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } -> ( ( 2nd ` t ) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) ( 1st ` t ) = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om ( 1st ` t ) = A.g i ( 1st ` u ) ) ) ) |
| 170 | 159 169 | syl11 | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( t e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 171 | 77 170 | jaod | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( ( t e. ( ( (/) Sat (/) ) ` y ) \/ t e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 172 | 72 171 | sylbid | |- ( ( y e. _om /\ A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) -> ( t e. ( ( (/) Sat (/) ) ` suc y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 173 | 172 | ex | |- ( y e. _om -> ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> ( t e. ( ( (/) Sat (/) ) ` suc y ) -> E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) ) |
| 174 | 173 | ralrimdv | |- ( y e. _om -> ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> A. t e. ( ( (/) Sat (/) ) ` suc y ) E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) ) |
| 175 | 75 | cbvralvw | |- ( A. w e. ( ( (/) Sat (/) ) ` suc y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) <-> A. t e. ( ( (/) Sat (/) ) ` suc y ) E. a E. b ( 1st ` t ) e. ( _om X. ( a X. b ) ) ) |
| 176 | 174 175 | imbitrrdi | |- ( y e. _om -> ( A. w e. ( ( (/) Sat (/) ) ` y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) -> A. w e. ( ( (/) Sat (/) ) ` suc y ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) ) |
| 177 | 2 4 6 8 37 176 | finds | |- ( N e. _om -> A. w e. ( ( (/) Sat (/) ) ` N ) E. a E. b ( 1st ` w ) e. ( _om X. ( a X. b ) ) ) |