This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexeq | |- ( A = B -> ( E. x e. A ph <-> E. x e. B ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq | |- ( A = B <-> A. x ( x e. A <-> x e. B ) ) |
|
| 2 | anbi1 | |- ( ( x e. A <-> x e. B ) -> ( ( x e. A /\ ph ) <-> ( x e. B /\ ph ) ) ) |
|
| 3 | 2 | alexbii | |- ( A. x ( x e. A <-> x e. B ) -> ( E. x ( x e. A /\ ph ) <-> E. x ( x e. B /\ ph ) ) ) |
| 4 | 1 3 | sylbi | |- ( A = B -> ( E. x ( x e. A /\ ph ) <-> E. x ( x e. B /\ ph ) ) ) |
| 5 | df-rex | |- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
|
| 6 | df-rex | |- ( E. x e. B ph <-> E. x ( x e. B /\ ph ) ) |
|
| 7 | 4 5 6 | 3bitr4g | |- ( A = B -> ( E. x e. A ph <-> E. x e. B ph ) ) |