This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class is a set, then it is a member of a set. (Contributed by NM, 4-Jan-2002) Generalize from the proof of elALT . (Revised by BJ, 3-Apr-2019) Avoid ax-sep , ax-nul , ax-pow . (Revised by BTernaryTau, 15-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sels | |- ( A e. V -> E. x A e. x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( y = A -> ( y e. x <-> A e. x ) ) |
|
| 2 | 1 | exbidv | |- ( y = A -> ( E. x y e. x <-> E. x A e. x ) ) |
| 3 | el | |- E. x y e. x |
|
| 4 | 2 3 | vtoclg | |- ( A e. V -> E. x A e. x ) |