This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential specialization with two quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | spc2egv.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
| Assertion | spc2egv | |- ( ( A e. V /\ B e. W ) -> ( ps -> E. x E. y ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spc2egv.1 | |- ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
| 2 | elisset | |- ( A e. V -> E. x x = A ) |
|
| 3 | elisset | |- ( B e. W -> E. y y = B ) |
|
| 4 | 2 3 | anim12i | |- ( ( A e. V /\ B e. W ) -> ( E. x x = A /\ E. y y = B ) ) |
| 5 | exdistrv | |- ( E. x E. y ( x = A /\ y = B ) <-> ( E. x x = A /\ E. y y = B ) ) |
|
| 6 | 4 5 | sylibr | |- ( ( A e. V /\ B e. W ) -> E. x E. y ( x = A /\ y = B ) ) |
| 7 | 1 | biimprcd | |- ( ps -> ( ( x = A /\ y = B ) -> ph ) ) |
| 8 | 7 | 2eximdv | |- ( ps -> ( E. x E. y ( x = A /\ y = B ) -> E. x E. y ph ) ) |
| 9 | 6 8 | syl5com | |- ( ( A e. V /\ B e. W ) -> ( ps -> E. x E. y ph ) ) |