This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A consequence of membership in an ordered-pair class abstraction, using ordered pair extractors. (Contributed by NM, 29-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elopabi.1 | |- ( x = ( 1st ` A ) -> ( ph <-> ps ) ) |
|
| elopabi.2 | |- ( y = ( 2nd ` A ) -> ( ps <-> ch ) ) |
||
| Assertion | elopabi | |- ( A e. { <. x , y >. | ph } -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopabi.1 | |- ( x = ( 1st ` A ) -> ( ph <-> ps ) ) |
|
| 2 | elopabi.2 | |- ( y = ( 2nd ` A ) -> ( ps <-> ch ) ) |
|
| 3 | relopabv | |- Rel { <. x , y >. | ph } |
|
| 4 | 1st2nd | |- ( ( Rel { <. x , y >. | ph } /\ A e. { <. x , y >. | ph } ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
|
| 5 | 3 4 | mpan | |- ( A e. { <. x , y >. | ph } -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 6 | id | |- ( A e. { <. x , y >. | ph } -> A e. { <. x , y >. | ph } ) |
|
| 7 | 5 6 | eqeltrrd | |- ( A e. { <. x , y >. | ph } -> <. ( 1st ` A ) , ( 2nd ` A ) >. e. { <. x , y >. | ph } ) |
| 8 | fvex | |- ( 1st ` A ) e. _V |
|
| 9 | fvex | |- ( 2nd ` A ) e. _V |
|
| 10 | 8 9 1 2 | opelopab | |- ( <. ( 1st ` A ) , ( 2nd ` A ) >. e. { <. x , y >. | ph } <-> ch ) |
| 11 | 7 10 | sylib | |- ( A e. { <. x , y >. | ph } -> ch ) |