This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Godel-set of universal quantification. Here N e.om corresponds to vN , and U represents another formula, and this expression is [ A. x ph ] = A.g N U where x is the N -th variable, U = [ ph ] is the code for ph . Note that this is a class expression, not a wff. (Contributed by Mario Carneiro, 14-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-goal | |- A.g N U = <. 2o , <. N , U >. >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cN | |- N |
|
| 1 | cU | |- U |
|
| 2 | 1 0 | cgol | |- A.g N U |
| 3 | c2o | |- 2o |
|
| 4 | 0 1 | cop | |- <. N , U >. |
| 5 | 3 4 | cop | |- <. 2o , <. N , U >. >. |
| 6 | 2 5 | wceq | |- A.g N U = <. 2o , <. N , U >. >. |