This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcl2.1 | |- ( ph -> ( F ` M ) e. C ) |
|
| seqcl2.2 | |- ( ( ph /\ ( x e. C /\ y e. D ) ) -> ( x .+ y ) e. C ) |
||
| seqf2.3 | |- Z = ( ZZ>= ` M ) |
||
| seqf2.4 | |- ( ph -> M e. ZZ ) |
||
| seqf2.5 | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> ( F ` x ) e. D ) |
||
| Assertion | seqf2 | |- ( ph -> seq M ( .+ , F ) : Z --> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcl2.1 | |- ( ph -> ( F ` M ) e. C ) |
|
| 2 | seqcl2.2 | |- ( ( ph /\ ( x e. C /\ y e. D ) ) -> ( x .+ y ) e. C ) |
|
| 3 | seqf2.3 | |- Z = ( ZZ>= ` M ) |
|
| 4 | seqf2.4 | |- ( ph -> M e. ZZ ) |
|
| 5 | seqf2.5 | |- ( ( ph /\ x e. ( ZZ>= ` ( M + 1 ) ) ) -> ( F ` x ) e. D ) |
|
| 6 | seqfn | |- ( M e. ZZ -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
|
| 7 | 4 6 | syl | |- ( ph -> seq M ( .+ , F ) Fn ( ZZ>= ` M ) ) |
| 8 | 1 | adantr | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` M ) e. C ) |
| 9 | 2 | adantlr | |- ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ ( x e. C /\ y e. D ) ) -> ( x .+ y ) e. C ) |
| 10 | simpr | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 11 | elfzuz | |- ( x e. ( ( M + 1 ) ... k ) -> x e. ( ZZ>= ` ( M + 1 ) ) ) |
|
| 12 | 11 5 | sylan2 | |- ( ( ph /\ x e. ( ( M + 1 ) ... k ) ) -> ( F ` x ) e. D ) |
| 13 | 12 | adantlr | |- ( ( ( ph /\ k e. ( ZZ>= ` M ) ) /\ x e. ( ( M + 1 ) ... k ) ) -> ( F ` x ) e. D ) |
| 14 | 8 9 10 13 | seqcl2 | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( seq M ( .+ , F ) ` k ) e. C ) |
| 15 | 14 | ralrimiva | |- ( ph -> A. k e. ( ZZ>= ` M ) ( seq M ( .+ , F ) ` k ) e. C ) |
| 16 | ffnfv | |- ( seq M ( .+ , F ) : ( ZZ>= ` M ) --> C <-> ( seq M ( .+ , F ) Fn ( ZZ>= ` M ) /\ A. k e. ( ZZ>= ` M ) ( seq M ( .+ , F ) ` k ) e. C ) ) |
|
| 17 | 7 15 16 | sylanbrc | |- ( ph -> seq M ( .+ , F ) : ( ZZ>= ` M ) --> C ) |
| 18 | 3 | feq2i | |- ( seq M ( .+ , F ) : Z --> C <-> seq M ( .+ , F ) : ( ZZ>= ` M ) --> C ) |
| 19 | 17 18 | sylibr | |- ( ph -> seq M ( .+ , F ) : Z --> C ) |