This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
||
| ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
||
| ruc.5 | |- G = seq 0 ( D , C ) |
||
| Assertion | ruclem4 | |- ( ph -> ( G ` 0 ) = <. 0 , 1 >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| 2 | ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
|
| 3 | ruc.4 | |- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
|
| 4 | ruc.5 | |- G = seq 0 ( D , C ) |
|
| 5 | 4 | fveq1i | |- ( G ` 0 ) = ( seq 0 ( D , C ) ` 0 ) |
| 6 | 0z | |- 0 e. ZZ |
|
| 7 | ffn | |- ( F : NN --> RR -> F Fn NN ) |
|
| 8 | fnresdm | |- ( F Fn NN -> ( F |` NN ) = F ) |
|
| 9 | 1 7 8 | 3syl | |- ( ph -> ( F |` NN ) = F ) |
| 10 | dfn2 | |- NN = ( NN0 \ { 0 } ) |
|
| 11 | 10 | reseq2i | |- ( F |` NN ) = ( F |` ( NN0 \ { 0 } ) ) |
| 12 | 9 11 | eqtr3di | |- ( ph -> F = ( F |` ( NN0 \ { 0 } ) ) ) |
| 13 | 12 | uneq2d | |- ( ph -> ( { <. 0 , <. 0 , 1 >. >. } u. F ) = ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ) |
| 14 | 3 13 | eqtrid | |- ( ph -> C = ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ) |
| 15 | 14 | fveq1d | |- ( ph -> ( C ` 0 ) = ( ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ` 0 ) ) |
| 16 | c0ex | |- 0 e. _V |
|
| 17 | 16 | a1i | |- ( T. -> 0 e. _V ) |
| 18 | opex | |- <. 0 , 1 >. e. _V |
|
| 19 | 18 | a1i | |- ( T. -> <. 0 , 1 >. e. _V ) |
| 20 | eqid | |- ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) = ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) |
|
| 21 | 17 19 20 | fvsnun1 | |- ( T. -> ( ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ` 0 ) = <. 0 , 1 >. ) |
| 22 | 21 | mptru | |- ( ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ` 0 ) = <. 0 , 1 >. |
| 23 | 15 22 | eqtrdi | |- ( ph -> ( C ` 0 ) = <. 0 , 1 >. ) |
| 24 | 6 23 | seq1i | |- ( ph -> ( seq 0 ( D , C ) ` 0 ) = <. 0 , 1 >. ) |
| 25 | 5 24 | eqtrid | |- ( ph -> ( G ` 0 ) = <. 0 , 1 >. ) |