This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Remove an ordered pair not participating in a function value. (Contributed by NM, 1-Oct-2013) (Revised by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvunsn | |- ( B =/= D -> ( ( A u. { <. B , C >. } ) ` D ) = ( A ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resundir | |- ( ( A u. { <. B , C >. } ) |` { D } ) = ( ( A |` { D } ) u. ( { <. B , C >. } |` { D } ) ) |
|
| 2 | nelsn | |- ( B =/= D -> -. B e. { D } ) |
|
| 3 | ressnop0 | |- ( -. B e. { D } -> ( { <. B , C >. } |` { D } ) = (/) ) |
|
| 4 | 2 3 | syl | |- ( B =/= D -> ( { <. B , C >. } |` { D } ) = (/) ) |
| 5 | 4 | uneq2d | |- ( B =/= D -> ( ( A |` { D } ) u. ( { <. B , C >. } |` { D } ) ) = ( ( A |` { D } ) u. (/) ) ) |
| 6 | un0 | |- ( ( A |` { D } ) u. (/) ) = ( A |` { D } ) |
|
| 7 | 5 6 | eqtrdi | |- ( B =/= D -> ( ( A |` { D } ) u. ( { <. B , C >. } |` { D } ) ) = ( A |` { D } ) ) |
| 8 | 1 7 | eqtrid | |- ( B =/= D -> ( ( A u. { <. B , C >. } ) |` { D } ) = ( A |` { D } ) ) |
| 9 | 8 | fveq1d | |- ( B =/= D -> ( ( ( A u. { <. B , C >. } ) |` { D } ) ` D ) = ( ( A |` { D } ) ` D ) ) |
| 10 | fvressn | |- ( D e. _V -> ( ( ( A u. { <. B , C >. } ) |` { D } ) ` D ) = ( ( A u. { <. B , C >. } ) ` D ) ) |
|
| 11 | fvprc | |- ( -. D e. _V -> ( ( ( A u. { <. B , C >. } ) |` { D } ) ` D ) = (/) ) |
|
| 12 | fvprc | |- ( -. D e. _V -> ( ( A u. { <. B , C >. } ) ` D ) = (/) ) |
|
| 13 | 11 12 | eqtr4d | |- ( -. D e. _V -> ( ( ( A u. { <. B , C >. } ) |` { D } ) ` D ) = ( ( A u. { <. B , C >. } ) ` D ) ) |
| 14 | 10 13 | pm2.61i | |- ( ( ( A u. { <. B , C >. } ) |` { D } ) ` D ) = ( ( A u. { <. B , C >. } ) ` D ) |
| 15 | fvressn | |- ( D e. _V -> ( ( A |` { D } ) ` D ) = ( A ` D ) ) |
|
| 16 | fvprc | |- ( -. D e. _V -> ( ( A |` { D } ) ` D ) = (/) ) |
|
| 17 | fvprc | |- ( -. D e. _V -> ( A ` D ) = (/) ) |
|
| 18 | 16 17 | eqtr4d | |- ( -. D e. _V -> ( ( A |` { D } ) ` D ) = ( A ` D ) ) |
| 19 | 15 18 | pm2.61i | |- ( ( A |` { D } ) ` D ) = ( A ` D ) |
| 20 | 9 14 19 | 3eqtr3g | |- ( B =/= D -> ( ( A u. { <. B , C >. } ) ` D ) = ( A ` D ) ) |