This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc (the reals are uncountable). Substitutions for the function D . (Contributed by Mario Carneiro, 28-May-2014) (Revised by Fan Zheng, 6-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
||
| ruclem1.3 | |- ( ph -> A e. RR ) |
||
| ruclem1.4 | |- ( ph -> B e. RR ) |
||
| ruclem1.5 | |- ( ph -> M e. RR ) |
||
| ruclem1.6 | |- X = ( 1st ` ( <. A , B >. D M ) ) |
||
| ruclem1.7 | |- Y = ( 2nd ` ( <. A , B >. D M ) ) |
||
| Assertion | ruclem1 | |- ( ph -> ( ( <. A , B >. D M ) e. ( RR X. RR ) /\ X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) /\ Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | |- ( ph -> F : NN --> RR ) |
|
| 2 | ruc.2 | |- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
|
| 3 | ruclem1.3 | |- ( ph -> A e. RR ) |
|
| 4 | ruclem1.4 | |- ( ph -> B e. RR ) |
|
| 5 | ruclem1.5 | |- ( ph -> M e. RR ) |
|
| 6 | ruclem1.6 | |- X = ( 1st ` ( <. A , B >. D M ) ) |
|
| 7 | ruclem1.7 | |- Y = ( 2nd ` ( <. A , B >. D M ) ) |
|
| 8 | 2 | oveqd | |- ( ph -> ( <. A , B >. D M ) = ( <. A , B >. ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) M ) ) |
| 9 | 3 4 | opelxpd | |- ( ph -> <. A , B >. e. ( RR X. RR ) ) |
| 10 | simpr | |- ( ( x = <. A , B >. /\ y = M ) -> y = M ) |
|
| 11 | 10 | breq2d | |- ( ( x = <. A , B >. /\ y = M ) -> ( m < y <-> m < M ) ) |
| 12 | simpl | |- ( ( x = <. A , B >. /\ y = M ) -> x = <. A , B >. ) |
|
| 13 | 12 | fveq2d | |- ( ( x = <. A , B >. /\ y = M ) -> ( 1st ` x ) = ( 1st ` <. A , B >. ) ) |
| 14 | 13 | opeq1d | |- ( ( x = <. A , B >. /\ y = M ) -> <. ( 1st ` x ) , m >. = <. ( 1st ` <. A , B >. ) , m >. ) |
| 15 | 12 | fveq2d | |- ( ( x = <. A , B >. /\ y = M ) -> ( 2nd ` x ) = ( 2nd ` <. A , B >. ) ) |
| 16 | 15 | oveq2d | |- ( ( x = <. A , B >. /\ y = M ) -> ( m + ( 2nd ` x ) ) = ( m + ( 2nd ` <. A , B >. ) ) ) |
| 17 | 16 | oveq1d | |- ( ( x = <. A , B >. /\ y = M ) -> ( ( m + ( 2nd ` x ) ) / 2 ) = ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) ) |
| 18 | 17 15 | opeq12d | |- ( ( x = <. A , B >. /\ y = M ) -> <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. = <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) |
| 19 | 11 14 18 | ifbieq12d | |- ( ( x = <. A , B >. /\ y = M ) -> if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) = if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 20 | 19 | csbeq2dv | |- ( ( x = <. A , B >. /\ y = M ) -> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) = [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 21 | 13 15 | oveq12d | |- ( ( x = <. A , B >. /\ y = M ) -> ( ( 1st ` x ) + ( 2nd ` x ) ) = ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) ) |
| 22 | 21 | oveq1d | |- ( ( x = <. A , B >. /\ y = M ) -> ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) = ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) ) |
| 23 | 22 | csbeq1d | |- ( ( x = <. A , B >. /\ y = M ) -> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 24 | 20 23 | eqtrd | |- ( ( x = <. A , B >. /\ y = M ) -> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) = [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 25 | eqid | |- ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) |
|
| 26 | opex | |- <. ( 1st ` <. A , B >. ) , m >. e. _V |
|
| 27 | opex | |- <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. e. _V |
|
| 28 | 26 27 | ifex | |- if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) e. _V |
| 29 | 28 | csbex | |- [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) e. _V |
| 30 | 24 25 29 | ovmpoa | |- ( ( <. A , B >. e. ( RR X. RR ) /\ M e. RR ) -> ( <. A , B >. ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) M ) = [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 31 | 9 5 30 | syl2anc | |- ( ph -> ( <. A , B >. ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) M ) = [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 32 | 8 31 | eqtrd | |- ( ph -> ( <. A , B >. D M ) = [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 33 | op1stg | |- ( ( A e. RR /\ B e. RR ) -> ( 1st ` <. A , B >. ) = A ) |
|
| 34 | 3 4 33 | syl2anc | |- ( ph -> ( 1st ` <. A , B >. ) = A ) |
| 35 | op2ndg | |- ( ( A e. RR /\ B e. RR ) -> ( 2nd ` <. A , B >. ) = B ) |
|
| 36 | 3 4 35 | syl2anc | |- ( ph -> ( 2nd ` <. A , B >. ) = B ) |
| 37 | 34 36 | oveq12d | |- ( ph -> ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) = ( A + B ) ) |
| 38 | 37 | oveq1d | |- ( ph -> ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) = ( ( A + B ) / 2 ) ) |
| 39 | 38 | csbeq1d | |- ( ph -> [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = [_ ( ( A + B ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 40 | ovex | |- ( ( A + B ) / 2 ) e. _V |
|
| 41 | breq1 | |- ( m = ( ( A + B ) / 2 ) -> ( m < M <-> ( ( A + B ) / 2 ) < M ) ) |
|
| 42 | opeq2 | |- ( m = ( ( A + B ) / 2 ) -> <. ( 1st ` <. A , B >. ) , m >. = <. ( 1st ` <. A , B >. ) , ( ( A + B ) / 2 ) >. ) |
|
| 43 | oveq1 | |- ( m = ( ( A + B ) / 2 ) -> ( m + ( 2nd ` <. A , B >. ) ) = ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) ) |
|
| 44 | 43 | oveq1d | |- ( m = ( ( A + B ) / 2 ) -> ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) = ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) ) |
| 45 | 44 | opeq1d | |- ( m = ( ( A + B ) / 2 ) -> <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. = <. ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) |
| 46 | 41 42 45 | ifbieq12d | |- ( m = ( ( A + B ) / 2 ) -> if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = if ( ( ( A + B ) / 2 ) < M , <. ( 1st ` <. A , B >. ) , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) ) |
| 47 | 40 46 | csbie | |- [_ ( ( A + B ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = if ( ( ( A + B ) / 2 ) < M , <. ( 1st ` <. A , B >. ) , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) |
| 48 | 34 | opeq1d | |- ( ph -> <. ( 1st ` <. A , B >. ) , ( ( A + B ) / 2 ) >. = <. A , ( ( A + B ) / 2 ) >. ) |
| 49 | 36 | oveq2d | |- ( ph -> ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) = ( ( ( A + B ) / 2 ) + B ) ) |
| 50 | 49 | oveq1d | |- ( ph -> ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
| 51 | 50 36 | opeq12d | |- ( ph -> <. ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. = <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) |
| 52 | 48 51 | ifeq12d | |- ( ph -> if ( ( ( A + B ) / 2 ) < M , <. ( 1st ` <. A , B >. ) , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) |
| 53 | 47 52 | eqtrid | |- ( ph -> [_ ( ( A + B ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) |
| 54 | 39 53 | eqtrd | |- ( ph -> [_ ( ( ( 1st ` <. A , B >. ) + ( 2nd ` <. A , B >. ) ) / 2 ) / m ]_ if ( m < M , <. ( 1st ` <. A , B >. ) , m >. , <. ( ( m + ( 2nd ` <. A , B >. ) ) / 2 ) , ( 2nd ` <. A , B >. ) >. ) = if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) |
| 55 | 32 54 | eqtrd | |- ( ph -> ( <. A , B >. D M ) = if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) |
| 56 | 3 4 | readdcld | |- ( ph -> ( A + B ) e. RR ) |
| 57 | 56 | rehalfcld | |- ( ph -> ( ( A + B ) / 2 ) e. RR ) |
| 58 | 3 57 | opelxpd | |- ( ph -> <. A , ( ( A + B ) / 2 ) >. e. ( RR X. RR ) ) |
| 59 | 57 4 | readdcld | |- ( ph -> ( ( ( A + B ) / 2 ) + B ) e. RR ) |
| 60 | 59 | rehalfcld | |- ( ph -> ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. RR ) |
| 61 | 60 4 | opelxpd | |- ( ph -> <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. e. ( RR X. RR ) ) |
| 62 | 58 61 | ifcld | |- ( ph -> if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) e. ( RR X. RR ) ) |
| 63 | 55 62 | eqeltrd | |- ( ph -> ( <. A , B >. D M ) e. ( RR X. RR ) ) |
| 64 | 55 | fveq2d | |- ( ph -> ( 1st ` ( <. A , B >. D M ) ) = ( 1st ` if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) ) |
| 65 | fvif | |- ( 1st ` if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) = if ( ( ( A + B ) / 2 ) < M , ( 1st ` <. A , ( ( A + B ) / 2 ) >. ) , ( 1st ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) |
|
| 66 | op1stg | |- ( ( A e. RR /\ ( ( A + B ) / 2 ) e. _V ) -> ( 1st ` <. A , ( ( A + B ) / 2 ) >. ) = A ) |
|
| 67 | 3 40 66 | sylancl | |- ( ph -> ( 1st ` <. A , ( ( A + B ) / 2 ) >. ) = A ) |
| 68 | ovex | |- ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. _V |
|
| 69 | op1stg | |- ( ( ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. _V /\ B e. RR ) -> ( 1st ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
|
| 70 | 68 4 69 | sylancr | |- ( ph -> ( 1st ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
| 71 | 67 70 | ifeq12d | |- ( ph -> if ( ( ( A + B ) / 2 ) < M , ( 1st ` <. A , ( ( A + B ) / 2 ) >. ) , ( 1st ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 72 | 65 71 | eqtrid | |- ( ph -> ( 1st ` if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 73 | 64 72 | eqtrd | |- ( ph -> ( 1st ` ( <. A , B >. D M ) ) = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 74 | 6 73 | eqtrid | |- ( ph -> X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
| 75 | 55 | fveq2d | |- ( ph -> ( 2nd ` ( <. A , B >. D M ) ) = ( 2nd ` if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) ) |
| 76 | fvif | |- ( 2nd ` if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) = if ( ( ( A + B ) / 2 ) < M , ( 2nd ` <. A , ( ( A + B ) / 2 ) >. ) , ( 2nd ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) |
|
| 77 | op2ndg | |- ( ( A e. RR /\ ( ( A + B ) / 2 ) e. _V ) -> ( 2nd ` <. A , ( ( A + B ) / 2 ) >. ) = ( ( A + B ) / 2 ) ) |
|
| 78 | 3 40 77 | sylancl | |- ( ph -> ( 2nd ` <. A , ( ( A + B ) / 2 ) >. ) = ( ( A + B ) / 2 ) ) |
| 79 | op2ndg | |- ( ( ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. _V /\ B e. RR ) -> ( 2nd ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) = B ) |
|
| 80 | 68 4 79 | sylancr | |- ( ph -> ( 2nd ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) = B ) |
| 81 | 78 80 | ifeq12d | |- ( ph -> if ( ( ( A + B ) / 2 ) < M , ( 2nd ` <. A , ( ( A + B ) / 2 ) >. ) , ( 2nd ` <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) |
| 82 | 76 81 | eqtrid | |- ( ph -> ( 2nd ` if ( ( ( A + B ) / 2 ) < M , <. A , ( ( A + B ) / 2 ) >. , <. ( ( ( ( A + B ) / 2 ) + B ) / 2 ) , B >. ) ) = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) |
| 83 | 75 82 | eqtrd | |- ( ph -> ( 2nd ` ( <. A , B >. D M ) ) = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) |
| 84 | 7 83 | eqtrid | |- ( ph -> Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) |
| 85 | 63 74 84 | 3jca | |- ( ph -> ( ( <. A , B >. D M ) e. ( RR X. RR ) /\ X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) /\ Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) ) |