This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . Domain and codomain of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | ||
| ruc.4 | ⊢ 𝐶 = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) | ||
| ruc.5 | ⊢ 𝐺 = seq 0 ( 𝐷 , 𝐶 ) | ||
| Assertion | ruclem6 | ⊢ ( 𝜑 → 𝐺 : ℕ0 ⟶ ( ℝ × ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| 2 | ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | |
| 3 | ruc.4 | ⊢ 𝐶 = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) | |
| 4 | ruc.5 | ⊢ 𝐺 = seq 0 ( 𝐷 , 𝐶 ) | |
| 5 | 4 | fveq1i | ⊢ ( 𝐺 ‘ 0 ) = ( seq 0 ( 𝐷 , 𝐶 ) ‘ 0 ) |
| 6 | 0z | ⊢ 0 ∈ ℤ | |
| 7 | seq1 | ⊢ ( 0 ∈ ℤ → ( seq 0 ( 𝐷 , 𝐶 ) ‘ 0 ) = ( 𝐶 ‘ 0 ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( seq 0 ( 𝐷 , 𝐶 ) ‘ 0 ) = ( 𝐶 ‘ 0 ) |
| 9 | 5 8 | eqtri | ⊢ ( 𝐺 ‘ 0 ) = ( 𝐶 ‘ 0 ) |
| 10 | 1 2 3 4 | ruclem4 | ⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = 〈 0 , 1 〉 ) |
| 11 | 9 10 | eqtr3id | ⊢ ( 𝜑 → ( 𝐶 ‘ 0 ) = 〈 0 , 1 〉 ) |
| 12 | 0re | ⊢ 0 ∈ ℝ | |
| 13 | 1re | ⊢ 1 ∈ ℝ | |
| 14 | opelxpi | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) → 〈 0 , 1 〉 ∈ ( ℝ × ℝ ) ) | |
| 15 | 12 13 14 | mp2an | ⊢ 〈 0 , 1 〉 ∈ ( ℝ × ℝ ) |
| 16 | 11 15 | eqeltrdi | ⊢ ( 𝜑 → ( 𝐶 ‘ 0 ) ∈ ( ℝ × ℝ ) ) |
| 17 | 1st2nd2 | ⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 18 | 17 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 19 | 18 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → ( 𝑧 𝐷 𝑤 ) = ( 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 𝐷 𝑤 ) ) |
| 20 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → 𝐹 : ℕ ⟶ ℝ ) |
| 21 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) |
| 22 | xp1st | ⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( 1st ‘ 𝑧 ) ∈ ℝ ) | |
| 23 | 22 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → ( 1st ‘ 𝑧 ) ∈ ℝ ) |
| 24 | xp2nd | ⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( 2nd ‘ 𝑧 ) ∈ ℝ ) | |
| 25 | 24 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → ( 2nd ‘ 𝑧 ) ∈ ℝ ) |
| 26 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → 𝑤 ∈ ℝ ) | |
| 27 | eqid | ⊢ ( 1st ‘ ( 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 𝐷 𝑤 ) ) = ( 1st ‘ ( 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 𝐷 𝑤 ) ) | |
| 28 | eqid | ⊢ ( 2nd ‘ ( 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 𝐷 𝑤 ) ) = ( 2nd ‘ ( 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 𝐷 𝑤 ) ) | |
| 29 | 20 21 23 25 26 27 28 | ruclem1 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → ( ( 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 𝐷 𝑤 ) ∈ ( ℝ × ℝ ) ∧ ( 1st ‘ ( 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 𝐷 𝑤 ) ) = if ( ( ( ( 1st ‘ 𝑧 ) + ( 2nd ‘ 𝑧 ) ) / 2 ) < 𝑤 , ( 1st ‘ 𝑧 ) , ( ( ( ( ( 1st ‘ 𝑧 ) + ( 2nd ‘ 𝑧 ) ) / 2 ) + ( 2nd ‘ 𝑧 ) ) / 2 ) ) ∧ ( 2nd ‘ ( 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 𝐷 𝑤 ) ) = if ( ( ( ( 1st ‘ 𝑧 ) + ( 2nd ‘ 𝑧 ) ) / 2 ) < 𝑤 , ( ( ( 1st ‘ 𝑧 ) + ( 2nd ‘ 𝑧 ) ) / 2 ) , ( 2nd ‘ 𝑧 ) ) ) ) |
| 30 | 29 | simp1d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → ( 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 𝐷 𝑤 ) ∈ ( ℝ × ℝ ) ) |
| 31 | 19 30 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ℝ ) ) → ( 𝑧 𝐷 𝑤 ) ∈ ( ℝ × ℝ ) ) |
| 32 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 33 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 34 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 35 | 34 | fveq2i | ⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ( ℤ≥ ‘ 1 ) |
| 36 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 37 | 35 36 | eqtr4i | ⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ℕ |
| 38 | 37 | eleq2i | ⊢ ( 𝑧 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ↔ 𝑧 ∈ ℕ ) |
| 39 | 3 | equncomi | ⊢ 𝐶 = ( 𝐹 ∪ { 〈 0 , 〈 0 , 1 〉 〉 } ) |
| 40 | 39 | fveq1i | ⊢ ( 𝐶 ‘ 𝑧 ) = ( ( 𝐹 ∪ { 〈 0 , 〈 0 , 1 〉 〉 } ) ‘ 𝑧 ) |
| 41 | nnne0 | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ≠ 0 ) | |
| 42 | 41 | necomd | ⊢ ( 𝑧 ∈ ℕ → 0 ≠ 𝑧 ) |
| 43 | fvunsn | ⊢ ( 0 ≠ 𝑧 → ( ( 𝐹 ∪ { 〈 0 , 〈 0 , 1 〉 〉 } ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 44 | 42 43 | syl | ⊢ ( 𝑧 ∈ ℕ → ( ( 𝐹 ∪ { 〈 0 , 〈 0 , 1 〉 〉 } ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 45 | 40 44 | eqtrid | ⊢ ( 𝑧 ∈ ℕ → ( 𝐶 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 46 | 45 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) → ( 𝐶 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 47 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 48 | 46 47 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) → ( 𝐶 ‘ 𝑧 ) ∈ ℝ ) |
| 49 | 38 48 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) → ( 𝐶 ‘ 𝑧 ) ∈ ℝ ) |
| 50 | 16 31 32 33 49 | seqf2 | ⊢ ( 𝜑 → seq 0 ( 𝐷 , 𝐶 ) : ℕ0 ⟶ ( ℝ × ℝ ) ) |
| 51 | 4 | feq1i | ⊢ ( 𝐺 : ℕ0 ⟶ ( ℝ × ℝ ) ↔ seq 0 ( 𝐷 , 𝐶 ) : ℕ0 ⟶ ( ℝ × ℝ ) ) |
| 52 | 50 51 | sylibr | ⊢ ( 𝜑 → 𝐺 : ℕ0 ⟶ ( ℝ × ℝ ) ) |