This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem rhmrcl1

Description: Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Assertion rhmrcl1
|- ( F e. ( R RingHom S ) -> R e. Ring )

Proof

Step Hyp Ref Expression
1 dfrhm2
 |-  RingHom = ( r e. Ring , s e. Ring |-> ( ( r GrpHom s ) i^i ( ( mulGrp ` r ) MndHom ( mulGrp ` s ) ) ) )
2 1 elmpocl1
 |-  ( F e. ( R RingHom S ) -> R e. Ring )