This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof shortened by AV, 31-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| lidlcl.b | |- B = ( Base ` R ) |
||
| lidlmcl.t | |- .x. = ( .r ` R ) |
||
| Assertion | lidlmcl | |- ( ( ( R e. Ring /\ I e. U ) /\ ( X e. B /\ Y e. I ) ) -> ( X .x. Y ) e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| 2 | lidlcl.b | |- B = ( Base ` R ) |
|
| 3 | lidlmcl.t | |- .x. = ( .r ` R ) |
|
| 4 | ringrng | |- ( R e. Ring -> R e. Rng ) |
|
| 5 | 4 | adantr | |- ( ( R e. Ring /\ I e. U ) -> R e. Rng ) |
| 6 | simpr | |- ( ( R e. Ring /\ I e. U ) -> I e. U ) |
|
| 7 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 8 | 1 7 | lidl0cl | |- ( ( R e. Ring /\ I e. U ) -> ( 0g ` R ) e. I ) |
| 9 | 5 6 8 | 3jca | |- ( ( R e. Ring /\ I e. U ) -> ( R e. Rng /\ I e. U /\ ( 0g ` R ) e. I ) ) |
| 10 | 7 2 3 1 | rnglidlmcl | |- ( ( ( R e. Rng /\ I e. U /\ ( 0g ` R ) e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( X .x. Y ) e. I ) |
| 11 | 9 10 | sylan | |- ( ( ( R e. Ring /\ I e. U ) /\ ( X e. B /\ Y e. I ) ) -> ( X .x. Y ) e. I ) |