This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| lidl0cl.z | |- .0. = ( 0g ` R ) |
||
| Assertion | lidl0cl | |- ( ( R e. Ring /\ I e. U ) -> .0. e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| 2 | lidl0cl.z | |- .0. = ( 0g ` R ) |
|
| 3 | rlm0 | |- ( 0g ` R ) = ( 0g ` ( ringLMod ` R ) ) |
|
| 4 | 2 3 | eqtri | |- .0. = ( 0g ` ( ringLMod ` R ) ) |
| 5 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
|
| 6 | simpr | |- ( ( R e. Ring /\ I e. U ) -> I e. U ) |
|
| 7 | lidlval | |- ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) |
|
| 8 | 1 7 | eqtri | |- U = ( LSubSp ` ( ringLMod ` R ) ) |
| 9 | 6 8 | eleqtrdi | |- ( ( R e. Ring /\ I e. U ) -> I e. ( LSubSp ` ( ringLMod ` R ) ) ) |
| 10 | eqid | |- ( 0g ` ( ringLMod ` R ) ) = ( 0g ` ( ringLMod ` R ) ) |
|
| 11 | eqid | |- ( LSubSp ` ( ringLMod ` R ) ) = ( LSubSp ` ( ringLMod ` R ) ) |
|
| 12 | 10 11 | lss0cl | |- ( ( ( ringLMod ` R ) e. LMod /\ I e. ( LSubSp ` ( ringLMod ` R ) ) ) -> ( 0g ` ( ringLMod ` R ) ) e. I ) |
| 13 | 5 9 12 | syl2an2r | |- ( ( R e. Ring /\ I e. U ) -> ( 0g ` ( ringLMod ` R ) ) e. I ) |
| 14 | 4 13 | eqeltrid | |- ( ( R e. Ring /\ I e. U ) -> .0. e. I ) |