This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| lidlacl.p | |- .+ = ( +g ` R ) |
||
| Assertion | lidlacl | |- ( ( ( R e. Ring /\ I e. U ) /\ ( X e. I /\ Y e. I ) ) -> ( X .+ Y ) e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | |- U = ( LIdeal ` R ) |
|
| 2 | lidlacl.p | |- .+ = ( +g ` R ) |
|
| 3 | rlmplusg | |- ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) |
|
| 4 | 2 3 | eqtri | |- .+ = ( +g ` ( ringLMod ` R ) ) |
| 5 | 4 | oveqi | |- ( X .+ Y ) = ( X ( +g ` ( ringLMod ` R ) ) Y ) |
| 6 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
|
| 7 | 6 | adantr | |- ( ( R e. Ring /\ I e. U ) -> ( ringLMod ` R ) e. LMod ) |
| 8 | simpr | |- ( ( R e. Ring /\ I e. U ) -> I e. U ) |
|
| 9 | lidlval | |- ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) |
|
| 10 | 1 9 | eqtri | |- U = ( LSubSp ` ( ringLMod ` R ) ) |
| 11 | 8 10 | eleqtrdi | |- ( ( R e. Ring /\ I e. U ) -> I e. ( LSubSp ` ( ringLMod ` R ) ) ) |
| 12 | 7 11 | jca | |- ( ( R e. Ring /\ I e. U ) -> ( ( ringLMod ` R ) e. LMod /\ I e. ( LSubSp ` ( ringLMod ` R ) ) ) ) |
| 13 | eqid | |- ( +g ` ( ringLMod ` R ) ) = ( +g ` ( ringLMod ` R ) ) |
|
| 14 | eqid | |- ( LSubSp ` ( ringLMod ` R ) ) = ( LSubSp ` ( ringLMod ` R ) ) |
|
| 15 | 13 14 | lssvacl | |- ( ( ( ( ringLMod ` R ) e. LMod /\ I e. ( LSubSp ` ( ringLMod ` R ) ) ) /\ ( X e. I /\ Y e. I ) ) -> ( X ( +g ` ( ringLMod ` R ) ) Y ) e. I ) |
| 16 | 12 15 | sylan | |- ( ( ( R e. Ring /\ I e. U ) /\ ( X e. I /\ Y e. I ) ) -> ( X ( +g ` ( ringLMod ` R ) ) Y ) e. I ) |
| 17 | 5 16 | eqeltrid | |- ( ( ( R e. Ring /\ I e. U ) /\ ( X e. I /\ Y e. I ) ) -> ( X .+ Y ) e. I ) |