This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islidl.s | |- U = ( LIdeal ` R ) |
|
| islidl.b | |- B = ( Base ` R ) |
||
| islidl.p | |- .+ = ( +g ` R ) |
||
| islidl.t | |- .x. = ( .r ` R ) |
||
| Assertion | islidl | |- ( I e. U <-> ( I C_ B /\ I =/= (/) /\ A. x e. B A. a e. I A. b e. I ( ( x .x. a ) .+ b ) e. I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islidl.s | |- U = ( LIdeal ` R ) |
|
| 2 | islidl.b | |- B = ( Base ` R ) |
|
| 3 | islidl.p | |- .+ = ( +g ` R ) |
|
| 4 | islidl.t | |- .x. = ( .r ` R ) |
|
| 5 | rlmsca2 | |- ( _I ` R ) = ( Scalar ` ( ringLMod ` R ) ) |
|
| 6 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 7 | 6 2 | strfvi | |- B = ( Base ` ( _I ` R ) ) |
| 8 | rlmbas | |- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
|
| 9 | 2 8 | eqtri | |- B = ( Base ` ( ringLMod ` R ) ) |
| 10 | rlmplusg | |- ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) |
|
| 11 | 3 10 | eqtri | |- .+ = ( +g ` ( ringLMod ` R ) ) |
| 12 | rlmvsca | |- ( .r ` R ) = ( .s ` ( ringLMod ` R ) ) |
|
| 13 | 4 12 | eqtri | |- .x. = ( .s ` ( ringLMod ` R ) ) |
| 14 | lidlval | |- ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) |
|
| 15 | 1 14 | eqtri | |- U = ( LSubSp ` ( ringLMod ` R ) ) |
| 16 | 5 7 9 11 13 15 | islss | |- ( I e. U <-> ( I C_ B /\ I =/= (/) /\ A. x e. B A. a e. I A. b e. I ( ( x .x. a ) .+ b ) e. I ) ) |