This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of Mendelson p. 255. (Contributed by NM, 23-Feb-2004) (Proof shortened by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpmapen.1 | |- A e. _V |
|
| xpmapen.2 | |- B e. _V |
||
| xpmapen.3 | |- C e. _V |
||
| Assertion | xpmapen | |- ( ( A X. B ) ^m C ) ~~ ( ( A ^m C ) X. ( B ^m C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpmapen.1 | |- A e. _V |
|
| 2 | xpmapen.2 | |- B e. _V |
|
| 3 | xpmapen.3 | |- C e. _V |
|
| 4 | 2fveq3 | |- ( w = z -> ( 1st ` ( x ` w ) ) = ( 1st ` ( x ` z ) ) ) |
|
| 5 | 4 | cbvmptv | |- ( w e. C |-> ( 1st ` ( x ` w ) ) ) = ( z e. C |-> ( 1st ` ( x ` z ) ) ) |
| 6 | 2fveq3 | |- ( w = z -> ( 2nd ` ( x ` w ) ) = ( 2nd ` ( x ` z ) ) ) |
|
| 7 | 6 | cbvmptv | |- ( w e. C |-> ( 2nd ` ( x ` w ) ) ) = ( z e. C |-> ( 2nd ` ( x ` z ) ) ) |
| 8 | fveq2 | |- ( w = z -> ( ( 1st ` y ) ` w ) = ( ( 1st ` y ) ` z ) ) |
|
| 9 | fveq2 | |- ( w = z -> ( ( 2nd ` y ) ` w ) = ( ( 2nd ` y ) ` z ) ) |
|
| 10 | 8 9 | opeq12d | |- ( w = z -> <. ( ( 1st ` y ) ` w ) , ( ( 2nd ` y ) ` w ) >. = <. ( ( 1st ` y ) ` z ) , ( ( 2nd ` y ) ` z ) >. ) |
| 11 | 10 | cbvmptv | |- ( w e. C |-> <. ( ( 1st ` y ) ` w ) , ( ( 2nd ` y ) ` w ) >. ) = ( z e. C |-> <. ( ( 1st ` y ) ` z ) , ( ( 2nd ` y ) ` z ) >. ) |
| 12 | 1 2 3 5 7 11 | xpmapenlem | |- ( ( A X. B ) ^m C ) ~~ ( ( A ^m C ) X. ( B ^m C ) ) |