This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cpnnen | |- CC ~~ ~P NN |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexpen | |- ( RR X. RR ) ~~ RR |
|
| 2 | eleq1w | |- ( v = x -> ( v e. RR <-> x e. RR ) ) |
|
| 3 | eleq1w | |- ( w = y -> ( w e. RR <-> y e. RR ) ) |
|
| 4 | 2 3 | bi2anan9 | |- ( ( v = x /\ w = y ) -> ( ( v e. RR /\ w e. RR ) <-> ( x e. RR /\ y e. RR ) ) ) |
| 5 | oveq2 | |- ( w = y -> ( _i x. w ) = ( _i x. y ) ) |
|
| 6 | oveq12 | |- ( ( v = x /\ ( _i x. w ) = ( _i x. y ) ) -> ( v + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) |
|
| 7 | 5 6 | sylan2 | |- ( ( v = x /\ w = y ) -> ( v + ( _i x. w ) ) = ( x + ( _i x. y ) ) ) |
| 8 | 7 | eqeq2d | |- ( ( v = x /\ w = y ) -> ( z = ( v + ( _i x. w ) ) <-> z = ( x + ( _i x. y ) ) ) ) |
| 9 | 4 8 | anbi12d | |- ( ( v = x /\ w = y ) -> ( ( ( v e. RR /\ w e. RR ) /\ z = ( v + ( _i x. w ) ) ) <-> ( ( x e. RR /\ y e. RR ) /\ z = ( x + ( _i x. y ) ) ) ) ) |
| 10 | 9 | cbvoprab12v | |- { <. <. v , w >. , z >. | ( ( v e. RR /\ w e. RR ) /\ z = ( v + ( _i x. w ) ) ) } = { <. <. x , y >. , z >. | ( ( x e. RR /\ y e. RR ) /\ z = ( x + ( _i x. y ) ) ) } |
| 11 | df-mpo | |- ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) = { <. <. x , y >. , z >. | ( ( x e. RR /\ y e. RR ) /\ z = ( x + ( _i x. y ) ) ) } |
|
| 12 | 10 11 | eqtr4i | |- { <. <. v , w >. , z >. | ( ( v e. RR /\ w e. RR ) /\ z = ( v + ( _i x. w ) ) ) } = ( x e. RR , y e. RR |-> ( x + ( _i x. y ) ) ) |
| 13 | 12 | cnref1o | |- { <. <. v , w >. , z >. | ( ( v e. RR /\ w e. RR ) /\ z = ( v + ( _i x. w ) ) ) } : ( RR X. RR ) -1-1-onto-> CC |
| 14 | reex | |- RR e. _V |
|
| 15 | 14 14 | xpex | |- ( RR X. RR ) e. _V |
| 16 | 15 | f1oen | |- ( { <. <. v , w >. , z >. | ( ( v e. RR /\ w e. RR ) /\ z = ( v + ( _i x. w ) ) ) } : ( RR X. RR ) -1-1-onto-> CC -> ( RR X. RR ) ~~ CC ) |
| 17 | 13 16 | ax-mp | |- ( RR X. RR ) ~~ CC |
| 18 | 1 17 | entr3i | |- RR ~~ CC |
| 19 | rpnnen | |- RR ~~ ~P NN |
|
| 20 | 18 19 | entr3i | |- CC ~~ ~P NN |