This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998) (Proof shortened by BTernaryTau, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssnnfi | |- ( ( A e. _om /\ B C_ A ) -> B e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspss | |- ( B C_ A <-> ( B C. A \/ B = A ) ) |
|
| 2 | pssnn | |- ( ( A e. _om /\ B C. A ) -> E. x e. A B ~~ x ) |
|
| 3 | elnn | |- ( ( x e. A /\ A e. _om ) -> x e. _om ) |
|
| 4 | 3 | expcom | |- ( A e. _om -> ( x e. A -> x e. _om ) ) |
| 5 | 4 | anim1d | |- ( A e. _om -> ( ( x e. A /\ B ~~ x ) -> ( x e. _om /\ B ~~ x ) ) ) |
| 6 | 5 | reximdv2 | |- ( A e. _om -> ( E. x e. A B ~~ x -> E. x e. _om B ~~ x ) ) |
| 7 | 6 | adantr | |- ( ( A e. _om /\ B C. A ) -> ( E. x e. A B ~~ x -> E. x e. _om B ~~ x ) ) |
| 8 | 2 7 | mpd | |- ( ( A e. _om /\ B C. A ) -> E. x e. _om B ~~ x ) |
| 9 | isfi | |- ( B e. Fin <-> E. x e. _om B ~~ x ) |
|
| 10 | 8 9 | sylibr | |- ( ( A e. _om /\ B C. A ) -> B e. Fin ) |
| 11 | eleq1 | |- ( B = A -> ( B e. _om <-> A e. _om ) ) |
|
| 12 | 11 | biimparc | |- ( ( A e. _om /\ B = A ) -> B e. _om ) |
| 13 | nnfi | |- ( B e. _om -> B e. Fin ) |
|
| 14 | 12 13 | syl | |- ( ( A e. _om /\ B = A ) -> B e. Fin ) |
| 15 | 10 14 | jaodan | |- ( ( A e. _om /\ ( B C. A \/ B = A ) ) -> B e. Fin ) |
| 16 | 1 15 | sylan2b | |- ( ( A e. _om /\ B C_ A ) -> B e. Fin ) |