This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of a composition when the first member is a function. (Contributed by NM, 8-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cofunexg | |- ( ( Fun A /\ B e. C ) -> ( A o. B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | |- Rel ( A o. B ) |
|
| 2 | relssdmrn | |- ( Rel ( A o. B ) -> ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) |
| 4 | dmcoss | |- dom ( A o. B ) C_ dom B |
|
| 5 | dmexg | |- ( B e. C -> dom B e. _V ) |
|
| 6 | ssexg | |- ( ( dom ( A o. B ) C_ dom B /\ dom B e. _V ) -> dom ( A o. B ) e. _V ) |
|
| 7 | 4 5 6 | sylancr | |- ( B e. C -> dom ( A o. B ) e. _V ) |
| 8 | 7 | adantl | |- ( ( Fun A /\ B e. C ) -> dom ( A o. B ) e. _V ) |
| 9 | rnco | |- ran ( A o. B ) = ran ( A |` ran B ) |
|
| 10 | rnexg | |- ( B e. C -> ran B e. _V ) |
|
| 11 | resfunexg | |- ( ( Fun A /\ ran B e. _V ) -> ( A |` ran B ) e. _V ) |
|
| 12 | 10 11 | sylan2 | |- ( ( Fun A /\ B e. C ) -> ( A |` ran B ) e. _V ) |
| 13 | rnexg | |- ( ( A |` ran B ) e. _V -> ran ( A |` ran B ) e. _V ) |
|
| 14 | 12 13 | syl | |- ( ( Fun A /\ B e. C ) -> ran ( A |` ran B ) e. _V ) |
| 15 | 9 14 | eqeltrid | |- ( ( Fun A /\ B e. C ) -> ran ( A o. B ) e. _V ) |
| 16 | 8 15 | xpexd | |- ( ( Fun A /\ B e. C ) -> ( dom ( A o. B ) X. ran ( A o. B ) ) e. _V ) |
| 17 | ssexg | |- ( ( ( A o. B ) C_ ( dom ( A o. B ) X. ran ( A o. B ) ) /\ ( dom ( A o. B ) X. ran ( A o. B ) ) e. _V ) -> ( A o. B ) e. _V ) |
|
| 18 | 3 16 17 | sylancr | |- ( ( Fun A /\ B e. C ) -> ( A o. B ) e. _V ) |