This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the word reversing function. (Contributed by Stefan O'Rear, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | revval | |- ( W e. V -> ( reverse ` W ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | |- ( W e. V -> W e. _V ) |
|
| 2 | fveq2 | |- ( w = W -> ( # ` w ) = ( # ` W ) ) |
|
| 3 | 2 | oveq2d | |- ( w = W -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` W ) ) ) |
| 4 | id | |- ( w = W -> w = W ) |
|
| 5 | 2 | oveq1d | |- ( w = W -> ( ( # ` w ) - 1 ) = ( ( # ` W ) - 1 ) ) |
| 6 | 5 | oveq1d | |- ( w = W -> ( ( ( # ` w ) - 1 ) - x ) = ( ( ( # ` W ) - 1 ) - x ) ) |
| 7 | 4 6 | fveq12d | |- ( w = W -> ( w ` ( ( ( # ` w ) - 1 ) - x ) ) = ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) |
| 8 | 3 7 | mpteq12dv | |- ( w = W -> ( x e. ( 0 ..^ ( # ` w ) ) |-> ( w ` ( ( ( # ` w ) - 1 ) - x ) ) ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
| 9 | df-reverse | |- reverse = ( w e. _V |-> ( x e. ( 0 ..^ ( # ` w ) ) |-> ( w ` ( ( ( # ` w ) - 1 ) - x ) ) ) ) |
|
| 10 | ovex | |- ( 0 ..^ ( # ` W ) ) e. _V |
|
| 11 | 10 | mptex | |- ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) e. _V |
| 12 | 8 9 11 | fvmpt | |- ( W e. _V -> ( reverse ` W ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |
| 13 | 1 12 | syl | |- ( W e. V -> ( reverse ` W ) = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( W ` ( ( ( # ` W ) - 1 ) - x ) ) ) ) |