This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressms | |- ( ( K e. MetSp /\ A e. V ) -> ( K |`s A ) e. MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msxms | |- ( K e. MetSp -> K e. *MetSp ) |
|
| 2 | ressxms | |- ( ( K e. *MetSp /\ A e. V ) -> ( K |`s A ) e. *MetSp ) |
|
| 3 | 1 2 | sylan | |- ( ( K e. MetSp /\ A e. V ) -> ( K |`s A ) e. *MetSp ) |
| 4 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 5 | eqid | |- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
|
| 6 | 4 5 | msmet | |- ( K e. MetSp -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) |
| 7 | 6 | adantr | |- ( ( K e. MetSp /\ A e. V ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) |
| 8 | metres | |- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) e. ( Met ` ( ( Base ` K ) i^i A ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( K e. MetSp /\ A e. V ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) e. ( Met ` ( ( Base ` K ) i^i A ) ) ) |
| 10 | resres | |- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) X. ( Base ` K ) ) i^i ( A X. A ) ) ) |
|
| 11 | inxp | |- ( ( ( Base ` K ) X. ( Base ` K ) ) i^i ( A X. A ) ) = ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) |
|
| 12 | 11 | reseq2i | |- ( ( dist ` K ) |` ( ( ( Base ` K ) X. ( Base ` K ) ) i^i ( A X. A ) ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) |
| 13 | 10 12 | eqtri | |- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) |
| 14 | eqid | |- ( K |`s A ) = ( K |`s A ) |
|
| 15 | eqid | |- ( dist ` K ) = ( dist ` K ) |
|
| 16 | 14 15 | ressds | |- ( A e. V -> ( dist ` K ) = ( dist ` ( K |`s A ) ) ) |
| 17 | 16 | adantl | |- ( ( K e. MetSp /\ A e. V ) -> ( dist ` K ) = ( dist ` ( K |`s A ) ) ) |
| 18 | incom | |- ( ( Base ` K ) i^i A ) = ( A i^i ( Base ` K ) ) |
|
| 19 | 14 4 | ressbas | |- ( A e. V -> ( A i^i ( Base ` K ) ) = ( Base ` ( K |`s A ) ) ) |
| 20 | 19 | adantl | |- ( ( K e. MetSp /\ A e. V ) -> ( A i^i ( Base ` K ) ) = ( Base ` ( K |`s A ) ) ) |
| 21 | 18 20 | eqtrid | |- ( ( K e. MetSp /\ A e. V ) -> ( ( Base ` K ) i^i A ) = ( Base ` ( K |`s A ) ) ) |
| 22 | 21 | sqxpeqd | |- ( ( K e. MetSp /\ A e. V ) -> ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) = ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) |
| 23 | 17 22 | reseq12d | |- ( ( K e. MetSp /\ A e. V ) -> ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) = ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) |
| 24 | 13 23 | eqtrid | |- ( ( K e. MetSp /\ A e. V ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) |
| 25 | 21 | fveq2d | |- ( ( K e. MetSp /\ A e. V ) -> ( Met ` ( ( Base ` K ) i^i A ) ) = ( Met ` ( Base ` ( K |`s A ) ) ) ) |
| 26 | 9 24 25 | 3eltr3d | |- ( ( K e. MetSp /\ A e. V ) -> ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) e. ( Met ` ( Base ` ( K |`s A ) ) ) ) |
| 27 | eqid | |- ( TopOpen ` K ) = ( TopOpen ` K ) |
|
| 28 | 14 27 | resstopn | |- ( ( TopOpen ` K ) |`t A ) = ( TopOpen ` ( K |`s A ) ) |
| 29 | eqid | |- ( Base ` ( K |`s A ) ) = ( Base ` ( K |`s A ) ) |
|
| 30 | eqid | |- ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) = ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) |
|
| 31 | 28 29 30 | isms | |- ( ( K |`s A ) e. MetSp <-> ( ( K |`s A ) e. *MetSp /\ ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) e. ( Met ` ( Base ` ( K |`s A ) ) ) ) ) |
| 32 | 3 26 31 | sylanbrc | |- ( ( K e. MetSp /\ A e. V ) -> ( K |`s A ) e. MetSp ) |