This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology of a restricted structure. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resstopn.1 | |- H = ( K |`s A ) |
|
| resstopn.2 | |- J = ( TopOpen ` K ) |
||
| Assertion | resstopn | |- ( J |`t A ) = ( TopOpen ` H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resstopn.1 | |- H = ( K |`s A ) |
|
| 2 | resstopn.2 | |- J = ( TopOpen ` K ) |
|
| 3 | fvex | |- ( TopSet ` K ) e. _V |
|
| 4 | fvex | |- ( Base ` K ) e. _V |
|
| 5 | restco | |- ( ( ( TopSet ` K ) e. _V /\ ( Base ` K ) e. _V /\ A e. _V ) -> ( ( ( TopSet ` K ) |`t ( Base ` K ) ) |`t A ) = ( ( TopSet ` K ) |`t ( ( Base ` K ) i^i A ) ) ) |
|
| 6 | 3 4 5 | mp3an12 | |- ( A e. _V -> ( ( ( TopSet ` K ) |`t ( Base ` K ) ) |`t A ) = ( ( TopSet ` K ) |`t ( ( Base ` K ) i^i A ) ) ) |
| 7 | eqid | |- ( TopSet ` K ) = ( TopSet ` K ) |
|
| 8 | 1 7 | resstset | |- ( A e. _V -> ( TopSet ` K ) = ( TopSet ` H ) ) |
| 9 | incom | |- ( ( Base ` K ) i^i A ) = ( A i^i ( Base ` K ) ) |
|
| 10 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 11 | 1 10 | ressbas | |- ( A e. _V -> ( A i^i ( Base ` K ) ) = ( Base ` H ) ) |
| 12 | 9 11 | eqtrid | |- ( A e. _V -> ( ( Base ` K ) i^i A ) = ( Base ` H ) ) |
| 13 | 8 12 | oveq12d | |- ( A e. _V -> ( ( TopSet ` K ) |`t ( ( Base ` K ) i^i A ) ) = ( ( TopSet ` H ) |`t ( Base ` H ) ) ) |
| 14 | 6 13 | eqtrd | |- ( A e. _V -> ( ( ( TopSet ` K ) |`t ( Base ` K ) ) |`t A ) = ( ( TopSet ` H ) |`t ( Base ` H ) ) ) |
| 15 | 10 7 | topnval | |- ( ( TopSet ` K ) |`t ( Base ` K ) ) = ( TopOpen ` K ) |
| 16 | 15 2 | eqtr4i | |- ( ( TopSet ` K ) |`t ( Base ` K ) ) = J |
| 17 | 16 | oveq1i | |- ( ( ( TopSet ` K ) |`t ( Base ` K ) ) |`t A ) = ( J |`t A ) |
| 18 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 19 | eqid | |- ( TopSet ` H ) = ( TopSet ` H ) |
|
| 20 | 18 19 | topnval | |- ( ( TopSet ` H ) |`t ( Base ` H ) ) = ( TopOpen ` H ) |
| 21 | 14 17 20 | 3eqtr3g | |- ( A e. _V -> ( J |`t A ) = ( TopOpen ` H ) ) |
| 22 | simpr | |- ( ( J e. _V /\ A e. _V ) -> A e. _V ) |
|
| 23 | restfn | |- |`t Fn ( _V X. _V ) |
|
| 24 | 23 | fndmi | |- dom |`t = ( _V X. _V ) |
| 25 | 24 | ndmov | |- ( -. ( J e. _V /\ A e. _V ) -> ( J |`t A ) = (/) ) |
| 26 | 22 25 | nsyl5 | |- ( -. A e. _V -> ( J |`t A ) = (/) ) |
| 27 | reldmress | |- Rel dom |`s |
|
| 28 | 27 | ovprc2 | |- ( -. A e. _V -> ( K |`s A ) = (/) ) |
| 29 | 1 28 | eqtrid | |- ( -. A e. _V -> H = (/) ) |
| 30 | 29 | fveq2d | |- ( -. A e. _V -> ( TopSet ` H ) = ( TopSet ` (/) ) ) |
| 31 | tsetid | |- TopSet = Slot ( TopSet ` ndx ) |
|
| 32 | 31 | str0 | |- (/) = ( TopSet ` (/) ) |
| 33 | 30 32 | eqtr4di | |- ( -. A e. _V -> ( TopSet ` H ) = (/) ) |
| 34 | 33 | oveq1d | |- ( -. A e. _V -> ( ( TopSet ` H ) |`t ( Base ` H ) ) = ( (/) |`t ( Base ` H ) ) ) |
| 35 | 0rest | |- ( (/) |`t ( Base ` H ) ) = (/) |
|
| 36 | 34 20 35 | 3eqtr3g | |- ( -. A e. _V -> ( TopOpen ` H ) = (/) ) |
| 37 | 26 36 | eqtr4d | |- ( -. A e. _V -> ( J |`t A ) = ( TopOpen ` H ) ) |
| 38 | 21 37 | pm2.61i | |- ( J |`t A ) = ( TopOpen ` H ) |