This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resres | |- ( ( A |` B ) |` C ) = ( A |` ( B i^i C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | |- ( ( A |` B ) |` C ) = ( ( A |` B ) i^i ( C X. _V ) ) |
|
| 2 | df-res | |- ( A |` B ) = ( A i^i ( B X. _V ) ) |
|
| 3 | 2 | ineq1i | |- ( ( A |` B ) i^i ( C X. _V ) ) = ( ( A i^i ( B X. _V ) ) i^i ( C X. _V ) ) |
| 4 | xpindir | |- ( ( B i^i C ) X. _V ) = ( ( B X. _V ) i^i ( C X. _V ) ) |
|
| 5 | 4 | ineq2i | |- ( A i^i ( ( B i^i C ) X. _V ) ) = ( A i^i ( ( B X. _V ) i^i ( C X. _V ) ) ) |
| 6 | df-res | |- ( A |` ( B i^i C ) ) = ( A i^i ( ( B i^i C ) X. _V ) ) |
|
| 7 | inass | |- ( ( A i^i ( B X. _V ) ) i^i ( C X. _V ) ) = ( A i^i ( ( B X. _V ) i^i ( C X. _V ) ) ) |
|
| 8 | 5 6 7 | 3eqtr4ri | |- ( ( A i^i ( B X. _V ) ) i^i ( C X. _V ) ) = ( A |` ( B i^i C ) ) |
| 9 | 1 3 8 | 3eqtri | |- ( ( A |` B ) |` C ) = ( A |` ( B i^i C ) ) |