This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmetres | |- ( D e. ( *Met ` X ) -> ( D |` ( R X. R ) ) e. ( *Met ` ( X i^i R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetf | |- ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 2 | fdm | |- ( D : ( X X. X ) --> RR* -> dom D = ( X X. X ) ) |
|
| 3 | metreslem | |- ( dom D = ( X X. X ) -> ( D |` ( R X. R ) ) = ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( D e. ( *Met ` X ) -> ( D |` ( R X. R ) ) = ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) ) |
| 5 | inss1 | |- ( X i^i R ) C_ X |
|
| 6 | xmetres2 | |- ( ( D e. ( *Met ` X ) /\ ( X i^i R ) C_ X ) -> ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) e. ( *Met ` ( X i^i R ) ) ) |
|
| 7 | 5 6 | mpan2 | |- ( D e. ( *Met ` X ) -> ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) e. ( *Met ` ( X i^i R ) ) ) |
| 8 | 4 7 | eqeltrd | |- ( D e. ( *Met ` X ) -> ( D |` ( R X. R ) ) e. ( *Met ` ( X i^i R ) ) ) |